Skip to content

akshaykumarbedre/AutoInsight-AI

Repository files navigation

🚀 AutoInsight AI

Enterprise-Grade Intelligent Multi-Agent Data Analytics Platform Transform natural language into actionable data insights with collaborative AI agents, real-time streaming, and interactive visualizations.

Python FastAPI Streamlit Docker Live Demo


📑 Table of Contents


📌 Overview

AutoInsight AI democratizes data analytics by enabling anyone to query databases, analyze datasets, and generate visualizations with natural language conversations.

  • Multi-agent orchestration with AutoGen
  • Real-time Python execution in Docker
  • Natural language → SQL conversion
  • Interactive visualizations with AI-driven charting
  • FastAPI REST API + Streamlit web apps + HTML5 frontend

🎬 Live Demo & Screenshots

🌐 Try It Live

🚀 Interactive Demo

📸 Screenshots

Data Analysis Agent

Data Analysis Interface

Database Analytics Agent

Database Analytics Interface

📹 Video Demonstrations

  • 🗄️ Database Analytics: Demo
  • 📊 Data Analysis: Demo

⚡ Quick Start

🔹 Local Setup

git clone https://github.com/akshaykumarbedre/AutoInsight-AI.git
cd AutoInsight-AI
python -m venv venv
source venv/bin/activate  # (Windows: venv\Scripts\activate)
pip install -r requirements.txt
cp .env.example .env

Update .env with your OpenAI API key.

Run:

python app_fastapi.py

Visit: http://localhost:8080

🔹 Docker Setup

docker build -t autoinsight-ai .
docker run -p 5001:5001 --env-file .env autoinsight-ai

Visit: http://localhost:5001


✨ Core Features

  • 🤖 Multi-Agent Teams – SQL, visualization, code execution, and human-in-the-loop agents
  • 💬 Natural Language Queries – Convert plain English into SQL and insights
  • 📊 Intelligent Visualizations – Auto-generate bar, line, scatter, pie, and histogram charts
  • 🐳 Secure Execution – Docker-isolated Python runtime for safe code execution
  • 🔄 Real-Time Streaming – Asynchronous communication with progress tracking
  • 🌐 Multiple Interfaces – FastAPI APIs, Streamlit apps, modern web UI

🏗 Architecture

AutoInsight-AI/
├── 🌐 Frontend & Templates
│   ├── templates/                   # HTML5 web interfaces
│   │   ├── index.html              # Professional homepage & portfolio
│   │   ├── dataanalyst.html        # Data analysis interface
│   │   ├── database.html           # Database analytics interface
│   │   └── visualization.html      # Visualization studio
│   └── streamlit/                  # Streamlit applications
│       ├── Dataabase_agent_streamlit.py    # Database UI
│       └── Data_anaylis_agent_streamlit.py # Analysis UI
├── 🚀 Core Application
│   ├── app_fastapi.py              # Main FastAPI server with all APIs
│   ├── requirements.txt            # Production dependencies
│   ├── Dockerfile                  # Container deployment config
│   └── .env.example               # Environment configuration template
├── 🤖 Agent System
│   ├── agent/                      # Specialized AI agents
│   │   ├── database_agent.py       # SQL query generation agent
│   │   ├── visualization_agent.py  # Chart creation agent  
│   │   ├── dataanalsys_agent.py   # Data analysis expert agent
│   │   ├── code_excuter_agent.py  # Docker code execution agent
│   │   └── human_agent.py         # Human-in-the-loop agent
│   └── teams/                      # Multi-agent orchestration
│       └── team_manager.py        # RoundRobinGroupChat coordination
├── 🛠️ Tools & Execution
│   ├── tool/                       # Specialized tool implementations
│   │   ├── plotting.py            # 5+ visualization tools (Matplotlib/Plotly)
│   │   ├── docker_executer.py     # Secure containerized code execution
│   │   └── sql_tool_kit.py        # LangChain SQL database tools
│   └── util/                       # Utility functions & streaming
│       ├── stream_handler.py       # Real-time conversation streaming
│       ├── display_helper.py       # UI display utilities
│       └── stream_data_anaylisi.py # Data analysis streaming handlers
├── 🗄️ Data & Configuration  
│   ├── config/                     # Environment & model configuration
│   │   └── settings.py            # OpenAI client & model settings
│   ├── database/                   # Database management
│   │   ├── db_manager.py          # SQLite connection & toolkit
│   │   └── ecommerce.db           # Sample e-commerce database
│   ├── coding/                     # User uploaded data files
│   │   ├── *.csv, *.json, *.xlsx  # Analysis datasets
│   │   └── *.pkl                  # Trained ML models
│   └── plots/                      # Generated visualizations
│       └── *.png                  # Chart exports & images
├── 🧪 Development & Notebooks
│   ├── notebook/                   # Jupyter development notebooks
│   │   ├── *.ipynb                # Experimental agent workflows
│   │   └── demo.py                # Interactive demonstrations
│   └── __pycache__/               # Compiled Python modules
└── 📄 Documentation
    ├── README.md                   # Comprehensive documentation
    ├── autoinsight_server.log      # Application logging
    └── .gitignore                 # Version control configuration<!-- Replace ASCII with a diagram image -->

🛠 Technology Stack

  • AI & Agents: AutoGen, LangChain, OpenAI GPT-4o-mini
  • Backend: FastAPI, WebSockets, Uvicorn
  • Frontend: Streamlit, HTML5, CSS3, JS
  • Visualization: Pandas, Matplotlib, Plotly, Seaborn
  • Infrastructure: Docker, SQLite, SQLAlchemy

🎮 Usage

Once running, access the platform at http://localhost:8080:

  • 🗄️ Database Analytics → Query databases in natural language
  • 📊 Data Analysis → Upload CSV/Excel/JSON and run Python analysis
  • 📈 Visualization Studio → Generate charts and dashboards

Example queries:

"Show top 10 customers by total order value"
"Create a correlation matrix heatmap"
"Predict sales trends with a regression model"

🤝 Contributing

  1. Fork the repo
  2. Create a branch: git checkout -b feature/my-feature
  3. Commit changes: git commit -m 'Add my feature'
  4. Push: git push origin feature/my-feature
  5. Open a Pull Request

👉 Follow PEP 8, add docstrings, and include tests.


📄 License

This project is licensed under the MIT License - see LICENSE.


👨‍💻 Author

Akshay Kumar BM Senior Software Engineer & AI/ML Specialist


⭐ If you find this project useful, don’t forget to star the repo!

Built with ❤️ for the data science & AI community

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published