-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fix hyperparemeter for benchmark training
- Loading branch information
Showing
7 changed files
with
239 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
58 changes: 58 additions & 0 deletions
58
...ng/results/MD17Dataset/PAiNN_EnergyForceModel/PAiNN_MD17Dataset_score_benzene_ccsd_t.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: '' | ||
date_time: '2024-02-03 06:14:04' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (7, 0), ''device_name'': ''Tesla V100-SXM2-32GB''}]' | ||
energy_scaled_mean_absolute_error: | ||
- 0.006360400002449751 | ||
epochs: | ||
- 1000 | ||
execute_folds: null | ||
force_scaled_mean_absolute_error: | ||
- 0.02935820259153843 | ||
kgcnn_version: 4.0.0 | ||
loss: | ||
- 0.01170190330594778 | ||
max_energy_scaled_mean_absolute_error: | ||
- 10.103582382202148 | ||
max_force_scaled_mean_absolute_error: | ||
- 12.756863594055176 | ||
max_loss: | ||
- 5.149803638458252 | ||
max_val_energy_scaled_mean_absolute_error: | ||
- 23.537092208862305 | ||
max_val_force_scaled_mean_absolute_error: | ||
- 6.165292739868164 | ||
max_val_loss: | ||
- 2.6731419563293457 | ||
min_energy_scaled_mean_absolute_error: | ||
- 0.006335231009870768 | ||
min_force_scaled_mean_absolute_error: | ||
- 0.02935820259153843 | ||
min_loss: | ||
- 0.01170190330594778 | ||
min_val_energy_scaled_mean_absolute_error: | ||
- 0.006716604344546795 | ||
min_val_force_scaled_mean_absolute_error: | ||
- 0.04271000623703003 | ||
min_val_loss: | ||
- 0.01723838970065117 | ||
model_class: EnergyForceModel | ||
model_name: PAiNN | ||
model_version: '' | ||
multi_target_indices: null | ||
number_histories: 1 | ||
seed: 42 | ||
time_list: | ||
- '0:17:39.003485' | ||
trajectory_name: benzene_ccsd_t | ||
val_energy_scaled_mean_absolute_error: | ||
- 0.006726829335093498 | ||
val_force_scaled_mean_absolute_error: | ||
- 0.04271000623703003 | ||
val_loss: | ||
- 0.01723838970065117 |
1 change: 1 addition & 0 deletions
1
training/results/MD17Dataset/PAiNN_EnergyForceModel/PAiNN_hyper_benzene_ccsd_t.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"model": {"class_name": "EnergyForceModel", "module_name": "kgcnn.models.force", "config": {"name": "PAiNN", "nested_model_config": true, "output_to_tensor": false, "output_squeeze_states": true, "coordinate_input": 1, "inputs": [{"shape": [null], "name": "atomic_number", "dtype": "int32"}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32"}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64"}, {"shape": [], "name": "total_nodes", "dtype": "int64"}, {"shape": [], "name": "total_ranges", "dtype": "int64"}], "model_energy": {"class_name": "make_model", "module_name": "kgcnn.literature.PAiNN", "config": {"name": "PAiNNEnergy", "inputs": [{"shape": [null], "name": "atomic_number", "dtype": "int32"}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32"}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64"}, {"shape": [], "name": "total_nodes", "dtype": "int64"}, {"shape": [], "name": "total_ranges", "dtype": "int64"}], "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128}, "equiv_initialize_kwargs": {"dim": 3, "method": "eps"}, "bessel_basis": {"num_radial": 20, "cutoff": 5.0, "envelope_exponent": 5}, "pooling_args": {"pooling_method": "scatter_sum"}, "conv_args": {"units": 128, "cutoff": null}, "update_args": {"units": 128}, "depth": 3, "verbose": 10, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true], "units": [128, 1], "activation": ["swish", "linear"]}}}, "outputs": {"energy": {"name": "energy", "shape": [1]}, "force": {"name": "force", "shape": [null, 3]}}}}, "training": {"fit": {"batch_size": 32, "epochs": 1000, "validation_freq": 1, "verbose": 2, "callbacks": []}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": {"class_name": "kgcnn>LinearWarmupExponentialDecay", "config": {"learning_rate": 0.001, "warmup_steps": 150.0, "decay_steps": 20000.0, "decay_rate": 0.01}}, "amsgrad": true, "use_ema": true}}, "loss_weights": {"energy": 0.02, "force": 0.98}}, "scaler": {"class_name": "EnergyForceExtensiveLabelScaler", "config": {"standardize_scale": true}}}, "data": {}, "dataset": {"class_name": "MD17Dataset", "module_name": "kgcnn.data.datasets.MD17Dataset", "config": {"trajectory_name": "benzene_ccsd_t"}, "methods": [{"rename_property_on_graphs": {"old_property_name": "E", "new_property_name": "energy"}}, {"rename_property_on_graphs": {"old_property_name": "F", "new_property_name": "force"}}, {"rename_property_on_graphs": {"old_property_name": "z", "new_property_name": "atomic_number"}}, {"rename_property_on_graphs": {"old_property_name": "R", "new_property_name": "node_coordinates"}}, {"map_list": {"method": "set_range", "max_distance": 5, "max_neighbours": 10000, "node_coordinates": "node_coordinates"}}, {"map_list": {"method": "count_nodes_and_edges", "total_edges": "total_ranges", "count_edges": "range_indices", "count_nodes": "atomic_number", "total_nodes": "total_nodes"}}]}, "info": {"postfix": "", "postfix_file": "_benzene_ccsd_t", "kgcnn_version": "4.0.0"}} |
157 changes: 157 additions & 0 deletions
157
...sults/MatProjectGapDataset/CGCNN_make_crystal_model/CGCNN_MatProjectGapDataset_score.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: eV | ||
date_time: '2024-02-02 03:29:06' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 | ||
80GB PCIe''}]' | ||
epochs: | ||
- 1000 | ||
- 1000 | ||
- 1000 | ||
- 1000 | ||
- 1000 | ||
execute_folds: | ||
- 4 | ||
kgcnn_version: 4.0.0 | ||
learning_rate: | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
loss: | ||
- 0.012162698432803154 | ||
- 0.011314144358038902 | ||
- 0.011874545365571976 | ||
- 0.012134171091020107 | ||
- 0.013336176052689552 | ||
max_learning_rate: | ||
- 0.0010000000474974513 | ||
- 0.0010000000474974513 | ||
- 0.0010000000474974513 | ||
- 0.0010000000474974513 | ||
- 0.0010000000474974513 | ||
max_loss: | ||
- 0.43559181690216064 | ||
- 0.43510064482688904 | ||
- 0.4345819354057312 | ||
- 0.4330730736255646 | ||
- 0.4359922707080841 | ||
max_scaled_mean_absolute_error: | ||
- 0.6970012784004211 | ||
- 0.6949480772018433 | ||
- 0.694709062576294 | ||
- 0.6930708885192871 | ||
- 0.6976876854896545 | ||
max_scaled_root_mean_squared_error: | ||
- 1.0893703699111938 | ||
- 1.0879148244857788 | ||
- 1.085277795791626 | ||
- 1.0855214595794678 | ||
- 1.0865780115127563 | ||
max_val_loss: | ||
- 0.2306491881608963 | ||
- 0.23060937225818634 | ||
- 0.23704500496387482 | ||
- 0.2425326555967331 | ||
- 0.22873705625534058 | ||
max_val_scaled_mean_absolute_error: | ||
- 0.36888542771339417 | ||
- 0.3682745099067688 | ||
- 0.37900540232658386 | ||
- 0.38841739296913147 | ||
- 0.36602550745010376 | ||
max_val_scaled_root_mean_squared_error: | ||
- 0.716799259185791 | ||
- 0.7069448828697205 | ||
- 0.7239429950714111 | ||
- 0.758888840675354 | ||
- 0.7186479568481445 | ||
min_learning_rate: | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
- 1.1979999726463575e-05 | ||
min_loss: | ||
- 0.009732229635119438 | ||
- 0.009808916598558426 | ||
- 0.00922525953501463 | ||
- 0.009409546852111816 | ||
- 0.009921926073729992 | ||
min_scaled_mean_absolute_error: | ||
- 0.015554945915937424 | ||
- 0.015672003850340843 | ||
- 0.014760036021471024 | ||
- 0.015076831914484501 | ||
- 0.015888215973973274 | ||
min_scaled_root_mean_squared_error: | ||
- 0.07876173406839371 | ||
- 0.08663474768400192 | ||
- 0.07469789683818817 | ||
- 0.08317063748836517 | ||
- 0.08534816652536392 | ||
min_val_loss: | ||
- 0.12934552133083344 | ||
- 0.12370166927576065 | ||
- 0.131747305393219 | ||
- 0.12867090106010437 | ||
- 0.12415623664855957 | ||
min_val_scaled_mean_absolute_error: | ||
- 0.20687255263328552 | ||
- 0.19757099449634552 | ||
- 0.21063703298568726 | ||
- 0.206019327044487 | ||
- 0.19860394299030304 | ||
min_val_scaled_root_mean_squared_error: | ||
- 0.48725444078445435 | ||
- 0.4497235119342804 | ||
- 0.5058600902557373 | ||
- 0.4878058135509491 | ||
- 0.46084362268447876 | ||
model_class: make_crystal_model | ||
model_name: CGCNN | ||
model_version: '2023-11-28' | ||
multi_target_indices: null | ||
number_histories: 5 | ||
scaled_mean_absolute_error: | ||
- 0.019451702013611794 | ||
- 0.018081212416291237 | ||
- 0.01900147646665573 | ||
- 0.01944182626903057 | ||
- 0.02135508507490158 | ||
scaled_root_mean_squared_error: | ||
- 0.08296354115009308 | ||
- 0.0887678787112236 | ||
- 0.08019550889730453 | ||
- 0.08724640309810638 | ||
- 0.09060211479663849 | ||
seed: 42 | ||
time_list: | ||
- '14:31:39.401335' | ||
- '14:29:29.974382' | ||
- '14:28:03.272073' | ||
- '14:35:27.258171' | ||
- '14:39:25.346675' | ||
val_loss: | ||
- 0.12934552133083344 | ||
- 0.12370166927576065 | ||
- 0.131747305393219 | ||
- 0.12867090106010437 | ||
- 0.12415623664855957 | ||
val_scaled_mean_absolute_error: | ||
- 0.20687255263328552 | ||
- 0.19757099449634552 | ||
- 0.21063703298568726 | ||
- 0.206019327044487 | ||
- 0.19860394299030304 | ||
val_scaled_root_mean_squared_error: | ||
- 0.5045267343521118 | ||
- 0.4644222855567932 | ||
- 0.5119762420654297 | ||
- 0.49901968240737915 | ||
- 0.46084362268447876 |
1 change: 1 addition & 0 deletions
1
training/results/MatProjectGapDataset/CGCNN_make_crystal_model/CGCNN_hyper.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"model": {"class_name": "make_crystal_model", "module_name": "kgcnn.literature.CGCNN", "config": {"name": "CGCNN", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "node_frac_coordinates", "dtype": "float64", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "float32", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float64", "ragged": false}], "input_tensor_type": "ragged", "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "representation": "unit", "expand_distance": true, "make_distances": true, "gauss_args": {"bins": 60, "distance": 6, "offset": 0.0, "sigma": 0.4}, "conv_layer_args": {"units": 128, "activation_s": "kgcnn>shifted_softplus", "activation_out": "kgcnn>shifted_softplus", "batch_normalization": true}, "node_pooling_args": {"pooling_method": "mean"}, "depth": 4, "output_mlp": {"use_bias": [true, true, false], "units": [128, 64, 1], "activation": ["kgcnn>shifted_softplus", "kgcnn>shifted_softplus", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 128, "epochs": 1000, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.001, "learning_rate_stop": 1e-05, "epo_min": 500, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.001}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "eV"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectGapDataset", "module_name": "kgcnn.data.datasets.MatProjectGapDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 6.0}}]}} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters