-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update remaining issues and added benchmark results.
- Loading branch information
Showing
19 changed files
with
1,380 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
138 changes: 138 additions & 0 deletions
138
...LogGVRHDataset/DimeNetPP_make_crystal_model/DimeNetPP_MatProjectLogGVRHDataset_score.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: GPa | ||
date_time: '2024-01-08 06:45:52' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 | ||
80GB PCIe''}]' | ||
epochs: | ||
- 780 | ||
- 780 | ||
- 780 | ||
- 780 | ||
- 780 | ||
execute_folds: null | ||
kgcnn_version: 4.0.0 | ||
loss: | ||
- 0.010922136716544628 | ||
- 0.012440935708582401 | ||
- 0.011790135875344276 | ||
- 0.012489846907556057 | ||
- 0.010465575382113457 | ||
max_loss: | ||
- 0.49855291843414307 | ||
- 0.4948725402355194 | ||
- 0.48957857489585876 | ||
- 0.49504366517066956 | ||
- 0.4858188033103943 | ||
max_scaled_mean_absolute_error: | ||
- 0.18419674038887024 | ||
- 0.18402329087257385 | ||
- 0.18198589980602264 | ||
- 0.1838250607252121 | ||
- 0.17966441810131073 | ||
max_scaled_root_mean_squared_error: | ||
- 0.26791346073150635 | ||
- 0.2653201222419739 | ||
- 0.26441052556037903 | ||
- 0.26360654830932617 | ||
- 0.2580696642398834 | ||
max_val_loss: | ||
- 0.2740524113178253 | ||
- 0.2666001319885254 | ||
- 0.2633107006549835 | ||
- 0.2688142955303192 | ||
- 0.2762555480003357 | ||
max_val_scaled_mean_absolute_error: | ||
- 0.10124088823795319 | ||
- 0.09903348237276077 | ||
- 0.09774773567914963 | ||
- 0.09964113682508469 | ||
- 0.10210282355546951 | ||
max_val_scaled_root_mean_squared_error: | ||
- 0.14148077368736267 | ||
- 0.14824888110160828 | ||
- 0.14390243589878082 | ||
- 0.14439791440963745 | ||
- 0.14645302295684814 | ||
min_loss: | ||
- 0.010105308145284653 | ||
- 0.011313959024846554 | ||
- 0.01063369121402502 | ||
- 0.011703375726938248 | ||
- 0.009394158609211445 | ||
min_scaled_mean_absolute_error: | ||
- 0.003735009813681245 | ||
- 0.004206336103379726 | ||
- 0.003950342070311308 | ||
- 0.004348854534327984 | ||
- 0.0034740078262984753 | ||
min_scaled_root_mean_squared_error: | ||
- 0.007411751430481672 | ||
- 0.007685335818678141 | ||
- 0.006682842504233122 | ||
- 0.007493346463888884 | ||
- 0.0061401729471981525 | ||
min_val_loss: | ||
- 0.2148033231496811 | ||
- 0.2151896208524704 | ||
- 0.21606729924678802 | ||
- 0.23161034286022186 | ||
- 0.21440891921520233 | ||
min_val_scaled_mean_absolute_error: | ||
- 0.07936041802167892 | ||
- 0.07992357015609741 | ||
- 0.08021173626184464 | ||
- 0.08571653813123703 | ||
- 0.07917997241020203 | ||
min_val_scaled_root_mean_squared_error: | ||
- 0.1176394373178482 | ||
- 0.1263747215270996 | ||
- 0.12576667964458466 | ||
- 0.1290467530488968 | ||
- 0.11715161800384521 | ||
model_class: make_crystal_model | ||
model_name: DimeNetPP | ||
model_version: '2023-12-04' | ||
multi_target_indices: null | ||
number_histories: 5 | ||
scaled_mean_absolute_error: | ||
- 0.004034512676298618 | ||
- 0.004626349080353975 | ||
- 0.004383227322250605 | ||
- 0.00463763065636158 | ||
- 0.003870107466354966 | ||
scaled_root_mean_squared_error: | ||
- 0.008117007091641426 | ||
- 0.008247202262282372 | ||
- 0.00719984108582139 | ||
- 0.00837814249098301 | ||
- 0.006836302578449249 | ||
seed: 42 | ||
time_list: | ||
- '6:13:20.600089' | ||
- '6:09:44.598682' | ||
- '6:40:04.415875' | ||
- '6:53:14.904282' | ||
- '6:42:50.116184' | ||
val_loss: | ||
- 0.22598953545093536 | ||
- 0.22380274534225464 | ||
- 0.2243814319372177 | ||
- 0.2401961386203766 | ||
- 0.2184777557849884 | ||
val_scaled_mean_absolute_error: | ||
- 0.08350197225809097 | ||
- 0.08309303969144821 | ||
- 0.0832805335521698 | ||
- 0.0888705849647522 | ||
- 0.08074352145195007 | ||
val_scaled_root_mean_squared_error: | ||
- 0.12264644354581833 | ||
- 0.13055872917175293 | ||
- 0.1287512332201004 | ||
- 0.1403961032629013 | ||
- 0.1228041797876358 |
1 change: 1 addition & 0 deletions
1
training/results/MatProjectLogGVRHDataset/DimeNetPP_make_crystal_model/DimeNetPP_hyper.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"model": {"class_name": "make_crystal_model", "module_name": "kgcnn.literature.DimeNetPP", "config": {"name": "DimeNetPP", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int32", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 2], "name": "angle_indices", "dtype": "int64", "ragged": true}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 128, "embeddings_initializer": {"class_name": "RandomUniform", "config": {"minval": -1.7320508075688772, "maxval": 1.7320508075688772}}}, "emb_size": 128, "out_emb_size": 256, "int_emb_size": 64, "basis_emb_size": 8, "num_blocks": 4, "num_spherical": 7, "num_radial": 6, "cutoff": 5.0, "envelope_exponent": 5, "num_before_skip": 1, "num_after_skip": 2, "num_dense_output": 3, "num_targets": 1, "extensive": false, "output_init": "zeros", "activation": "swish", "verbose": 10, "output_embedding": "graph", "use_output_mlp": false, "output_mlp": {}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 16, "epochs": 780, "validation_freq": 10, "verbose": 2, "callbacks": [], "validation_batch_size": 8}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": {"class_name": "kgcnn>LinearWarmupExponentialDecay", "config": {"learning_rate": 0.001, "warmup_steps": 3000.0, "decay_steps": 4000000.0, "decay_rate": 0.01}}, "use_ema": true, "amsgrad": true}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectLogGVRHDataset", "module_name": "kgcnn.data.datasets.MatProjectLogGVRHDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0, "max_neighbours": 17}}, {"map_list": {"method": "set_angle", "allow_multi_edges": true, "allow_reverse_edges": true}}]}} |
156 changes: 156 additions & 0 deletions
156
...rojectLogGVRHDataset/Megnet_make_crystal_model/Megnet_MatProjectLogGVRHDataset_score.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
OS: posix_linux | ||
backend: tensorflow | ||
cuda_available: 'True' | ||
data_unit: GPa | ||
date_time: '2024-01-04 12:06:59' | ||
device_id: '[LogicalDevice(name=''/device:CPU:0'', device_type=''CPU''), LogicalDevice(name=''/device:GPU:0'', | ||
device_type=''GPU'')]' | ||
device_memory: '[]' | ||
device_name: '[{}, {''compute_capability'': (8, 0), ''device_name'': ''NVIDIA A100 | ||
80GB PCIe''}]' | ||
epochs: | ||
- 1000 | ||
- 1000 | ||
- 1000 | ||
- 1000 | ||
- 1000 | ||
execute_folds: null | ||
kgcnn_version: 4.0.0 | ||
learning_rate: | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
loss: | ||
- 0.008964268490672112 | ||
- 0.01045008935034275 | ||
- 0.009522628970444202 | ||
- 0.009219203144311905 | ||
- 0.009494253434240818 | ||
max_learning_rate: | ||
- 0.0005000000237487257 | ||
- 0.0005000000237487257 | ||
- 0.0005000000237487257 | ||
- 0.0005000000237487257 | ||
- 0.0005000000237487257 | ||
max_loss: | ||
- 0.4917912185192108 | ||
- 0.4792233109474182 | ||
- 0.4805443286895752 | ||
- 0.4773976802825928 | ||
- 0.48819148540496826 | ||
max_scaled_mean_absolute_error: | ||
- 0.18157169222831726 | ||
- 0.1780826598405838 | ||
- 0.17843185365200043 | ||
- 0.1771635264158249 | ||
- 0.18046769499778748 | ||
max_scaled_root_mean_squared_error: | ||
- 0.25538089871406555 | ||
- 0.25090330839157104 | ||
- 0.2512081563472748 | ||
- 0.24878676235675812 | ||
- 0.25342148542404175 | ||
max_val_loss: | ||
- 0.3892642557621002 | ||
- 0.3616122603416443 | ||
- 0.36633700132369995 | ||
- 0.3724639117717743 | ||
- 0.3718774914741516 | ||
max_val_scaled_mean_absolute_error: | ||
- 0.1435098499059677 | ||
- 0.1340455263853073 | ||
- 0.13566848635673523 | ||
- 0.1377905160188675 | ||
- 0.13669702410697937 | ||
max_val_scaled_root_mean_squared_error: | ||
- 0.20212596654891968 | ||
- 0.19816583395004272 | ||
- 0.18757493793964386 | ||
- 0.20138297975063324 | ||
- 0.1989428699016571 | ||
min_learning_rate: | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
- 5.549999968934571e-06 | ||
min_loss: | ||
- 0.00761491060256958 | ||
- 0.010199162177741528 | ||
- 0.009248618967831135 | ||
- 0.009219203144311905 | ||
- 0.00822273176163435 | ||
min_scaled_mean_absolute_error: | ||
- 0.002814092906191945 | ||
- 0.0037900579627603292 | ||
- 0.0034343195147812366 | ||
- 0.003426043316721916 | ||
- 0.00304029299877584 | ||
min_scaled_root_mean_squared_error: | ||
- 0.006396596785634756 | ||
- 0.008159836754202843 | ||
- 0.008076793514192104 | ||
- 0.006940171588212252 | ||
- 0.008059120737016201 | ||
min_val_loss: | ||
- 0.2344822883605957 | ||
- 0.2433883547782898 | ||
- 0.23295150697231293 | ||
- 0.24354171752929688 | ||
- 0.24186797440052032 | ||
min_val_scaled_mean_absolute_error: | ||
- 0.08650889247655869 | ||
- 0.09005645662546158 | ||
- 0.0863751545548439 | ||
- 0.08979988098144531 | ||
- 0.08870527148246765 | ||
min_val_scaled_root_mean_squared_error: | ||
- 0.12720821797847748 | ||
- 0.13807186484336853 | ||
- 0.13143642246723175 | ||
- 0.1411106437444687 | ||
- 0.1333688497543335 | ||
model_class: make_crystal_model | ||
model_name: Megnet | ||
model_version: '2023-12-05' | ||
multi_target_indices: null | ||
number_histories: 5 | ||
scaled_mean_absolute_error: | ||
- 0.0033130773808807135 | ||
- 0.0038830169942229986 | ||
- 0.0035354492720216513 | ||
- 0.003426043316721916 | ||
- 0.0035096919164061546 | ||
scaled_root_mean_squared_error: | ||
- 0.0068201362155377865 | ||
- 0.008816206827759743 | ||
- 0.008103175088763237 | ||
- 0.007409997750073671 | ||
- 0.008422690443694592 | ||
seed: 42 | ||
time_list: | ||
- '2:32:49.335213' | ||
- '2:34:01.461139' | ||
- '2:39:41.452388' | ||
- '2:40:30.004558' | ||
- '2:42:00.905719' | ||
val_loss: | ||
- 0.23461347818374634 | ||
- 0.24520882964134216 | ||
- 0.23295150697231293 | ||
- 0.24354171752929688 | ||
- 0.24289974570274353 | ||
val_scaled_mean_absolute_error: | ||
- 0.08654788881540298 | ||
- 0.09072180092334747 | ||
- 0.0863751545548439 | ||
- 0.08979988098144531 | ||
- 0.08907058835029602 | ||
val_scaled_root_mean_squared_error: | ||
- 0.1280117928981781 | ||
- 0.14162039756774902 | ||
- 0.13248546421527863 | ||
- 0.1423494815826416 | ||
- 0.13548214733600616 |
1 change: 1 addition & 0 deletions
1
training/results/MatProjectLogGVRHDataset/Megnet_make_crystal_model/Megnet_hyper.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
{"model": {"module_name": "kgcnn.literature.Megnet", "class_name": "make_crystal_model", "config": {"name": "Megnet", "inputs": [{"shape": [null], "name": "node_number", "dtype": "int32", "ragged": true}, {"shape": [null, 3], "name": "node_coordinates", "dtype": "float32", "ragged": true}, {"shape": [null, 2], "name": "range_indices", "dtype": "int64", "ragged": true}, {"shape": [1], "name": "charge", "dtype": "float32", "ragged": false}, {"shape": [null, 3], "name": "range_image", "dtype": "int64", "ragged": true}, {"shape": [3, 3], "name": "graph_lattice", "dtype": "float32", "ragged": false}], "input_tensor_type": "ragged", "input_embedding": null, "input_node_embedding": {"input_dim": 95, "output_dim": 64}, "make_distance": true, "expand_distance": true, "gauss_args": {"bins": 25, "distance": 5, "offset": 0.0, "sigma": 0.4}, "meg_block_args": {"node_embed": [64, 32, 32], "edge_embed": [64, 32, 32], "env_embed": [64, 32, 32], "activation": "kgcnn>softplus2"}, "set2set_args": {"channels": 16, "T": 3, "pooling_method": "sum", "init_qstar": "0"}, "node_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "edge_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "state_ff_args": {"units": [64, 32], "activation": "kgcnn>softplus2"}, "nblocks": 3, "has_ff": true, "dropout": null, "use_set2set": true, "verbose": 10, "output_embedding": "graph", "output_mlp": {"use_bias": [true, true, true], "units": [32, 16, 1], "activation": ["kgcnn>softplus2", "kgcnn>softplus2", "linear"]}}}, "training": {"cross_validation": {"class_name": "KFold", "config": {"n_splits": 5, "random_state": 42, "shuffle": true}}, "fit": {"batch_size": 32, "epochs": 1000, "validation_freq": 10, "verbose": 2, "callbacks": [{"class_name": "kgcnn>LinearLearningRateScheduler", "config": {"learning_rate_start": 0.0005, "learning_rate_stop": 5e-06, "epo_min": 100, "epo": 1000, "verbose": 0}}]}, "compile": {"optimizer": {"class_name": "Adam", "config": {"learning_rate": 0.0005}}, "loss": "mean_absolute_error"}, "scaler": {"class_name": "StandardLabelScaler", "module_name": "kgcnn.data.transform.scaler.standard", "config": {"with_std": true, "with_mean": true, "copy": true}}, "multi_target_indices": null}, "data": {"data_unit": "GPa"}, "info": {"postfix": "", "postfix_file": "", "kgcnn_version": "4.0.0"}, "dataset": {"class_name": "MatProjectLogGVRHDataset", "module_name": "kgcnn.data.datasets.MatProjectLogGVRHDataset", "config": {}, "methods": [{"map_list": {"method": "set_range_periodic", "max_distance": 5.0}}]}} |
Oops, something went wrong.