Official PyTorch implementation of the paper "DeepSTI: Towards Tensor Reconstruction using Fewer Orientations in Susceptibility Tensor Imaging" Arxiv
Use the command below to install all required libraries.
conda env create --name [MY_ENV] -f environment.yml
Activate conda environment first
conda activate [MY_ENV]
python deepsti/main.py
arguments:
--mode train (train or predict)
--name name of your experiment
--data path to dataset directory
--train_list list of training data
--validate_list list of validation data
--test_list list of testing data
--tesla field strength in training data [default: 3]
--batch_size batch size [default is 2]
--gpu GPU ID's, e.g. "0" or "0,1"
Example:
python deepsti/main.py --mode train --name myexp --data data/ --train_list train.txt --validate_list validate.txt --test_list test.txt --gpu 0,1
tensorboard --logdir experiment/tb_log/deepsti_resunet_myexp
python deepsti/main.py
arguments:
--mode predict (train or predict)
--resume_file saved model parameters
--ext_data yml file of external data information
--gpu GPU ID's, e.g. "0" or "0,1"
Example:
python deepsti/main.py --mode predict --resume_file experiment/checkpoint/deepsti_resunet_Vmodel.pkl --gpu 1 --ext_data data/yml/example.yml
Predictions will be saved in experiment/results
.
Demo data will be provided shortly.