Public code release for the paper "Context Tuning for In-Context Optimization".
Set up the Conda environment with requirements.txt to set up packages.
conda create --name contexttuning python=3.10
conda activate contexttuning
pip install -r requirements.txt
Download NLP-LR data (7.2GB).
conda install -c conda-forge git-lfs
git clone https://huggingface.co/datasets/allenai/metaicl-data
Zero-Shot Prompting:
accelerate launch --mixed_precision bf16 train.py \
--experiment_name zeroshot \
--zero_shot \
--eval_split 87
# output score: 0.3568
Standard In-Context Learning with 16 demonstrations pairs:
accelerate launch --mixed_precision bf16 train.py \
--experiment_name icl \
--eval_split 87
# output score: 0.3612
CT-KV with 16 demonstration pairs:
accelerate launch --mixed_precision bf16 train.py \
--experiment_name ctkv \
--epochs 200 \
--eval_split 87
# output score: 0.4470
If you have any questions or find any bugs, please feel free to contact Jack Lu ([email protected]). If you found our work helpful, please cite it with the following BibTeX:
@misc{lu2025contexttuning,
title={Context Tuning for In-Context Optimization},
author={Jack Lu and Ryan Teehan and Zhenbang Yang and Mengye Ren},
year={2025},
eprint={2507.04221},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
