Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 6 additions & 3 deletions Cubical/Core/Glue.agda
Original file line number Diff line number Diff line change
Expand Up @@ -15,21 +15,24 @@ open import Cubical.Core.Primitives
open import Agda.Builtin.Cubical.Glue public
using ( isEquiv -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) → Type (ℓ ⊔ ℓ')

; equiv-proof -- ∀ (y : B) → isContr (fiber f y)
; equiv-proof -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} {f : A → B} → isEquiv f
-- → (y : B) → isContr (fiber f y)

; _≃_ -- ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ ⊔ ℓ')

; equivFun -- ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} → A ≃ B → A → B

; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ
-- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a
; equivProof -- ∀ {ℓ ℓ'} (T : Type ℓ) (A : Type ℓ') (w : T ≃ A) (a : A) φ
-- Partial φ (fiber (equivFun w) a) → fiber (equivFun w) a

; primGlue -- ∀ {ℓ ℓ'} (A : Type ℓ) {φ : I} (T : Partial φ (Type ℓ'))
-- → (e : PartialP φ (λ o → T o ≃ A)) → Type ℓ'

; prim^unglue -- ∀ {ℓ ℓ'} {A : Type ℓ} {φ : I} {T : Partial φ (Type ℓ')}
-- → {e : PartialP φ (λ o → T o ≃ A)} → primGlue A T e → A

; pathToEquiv -- ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B

-- The ∀ operation on I. This is commented out as it is not currently used for anything
-- ; primFaceForall -- (I → I) → I
)
Expand Down
13 changes: 13 additions & 0 deletions Cubical/Foundations/Equiv.agda
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,19 @@ module _ {f : A → B} (equivF : isEquiv f) where
})
(commSqIsEq a i j)

commPathIsEq' : ∀ a → retIsEq (invIsEq a) ≡ cong invIsEq (secIsEq a)
commPathIsEq' a i j = hcomp (λ where
k (i = i0) → retIsEq (invIsEq (secIsEq a k)) j
k (i = i1) → invIsEq (secIsEq (secIsEq a k) j)
k (j = i0) → invIsEq (f (invIsEq (secIsEq a k)))
k (j = i1) → invIsEq (secIsEq a k)
) (hcomp (λ where
k (i = i0) → retIsEq (retIsEq (invIsEq a) (~ k)) (j ∨ ~ k)
k (i = i1) → invIsEq (commSqIsEq (invIsEq a) (~ k) j)
k (j = i0) → retIsEq (retIsEq (invIsEq a) (~ k)) (~ k ∧ ~ i)
k (j = i1) → retIsEq (invIsEq a) (~ k ∧ ~ i)
) (retIsEq (invIsEq a) (~ i)))

module _ (w : A ≃ B) where
invEq : B → A
invEq = invIsEq (snd w)
Expand Down
Loading