Skip to content

[ENH] Added load_model functionality to InceptionTimeRegressor and LITETimeRegressor #2772

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 33 additions & 0 deletions aeon/regression/deep_learning/_inception_time.py
Original file line number Diff line number Diff line change
Expand Up @@ -336,6 +336,39 @@ def _predict(self, X) -> np.ndarray:

return ypreds

@classmethod
def load_model(cls, model_paths):
"""
Load pre-trained regressors instead of fitting.

This enables full use of the estimator's functionality such as predict.

Parameters
----------
model_paths : list of str (list of paths including the
model names and extension)
List of file paths to the saved .keras models of each regressor.

Returns
-------
InceptionTimeRegressor
An instance of InceptionTimeRegressor with the pre-trained models loaded.
"""
assert isinstance(
model_paths, list
), "model_paths should be a list of paths to the models"

regressor = cls(n_regressors=len(model_paths))
regressor.regressors_ = []

for path in model_paths:
ind_regressor = IndividualInceptionRegressor()
ind_regressor.load_model(path)
regressor.regressors_.append(ind_regressor)

regressor.is_fitted = True
return regressor

@classmethod
def _get_test_params(cls, parameter_set="default"):
"""Return testing parameter settings for the estimator.
Expand Down
33 changes: 33 additions & 0 deletions aeon/regression/deep_learning/_lite_time.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,6 +262,39 @@ def _predict(self, X) -> np.ndarray:

return vals

@classmethod
def load_model(cls, model_paths):
"""
Load pre-trained regressors instead of fitting.

This enables full use of the estimator's functionality such as predict.

Parameters
----------
model_paths : list of str (list of paths including the
model names and extension)
List of file paths to the saved .keras models of each regressor.

Returns
-------
LITETimeRegressor
An instance of LITETimeRegressor with the pre-trained models loaded.
"""
assert isinstance(
model_paths, list
), "model_paths should be a list of paths to the models"

regressor = cls(n_regressors=len(model_paths))
regressor.regressors_ = []

for path in model_paths:
ind_regressor = IndividualLITERegressor()
ind_regressor.load_model(path)
regressor.regressors_.append(ind_regressor)

regressor.is_fitted = True
return regressor

@classmethod
def _get_test_params(cls, parameter_set="default"):
"""Return testing parameter settings for the estimator.
Expand Down
55 changes: 55 additions & 0 deletions aeon/regression/deep_learning/tests/test_inception_time.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
"""Tests for save/load functionality of InceptionTimeRegressor."""

import glob
import os
import tempfile

import numpy as np
import pytest

from aeon.regression.deep_learning import InceptionTimeRegressor
from aeon.testing.data_generation import make_example_3d_numpy
from aeon.utils.validation._dependencies import _check_soft_dependencies


@pytest.mark.skipif(
not _check_soft_dependencies("tensorflow", severity="none"),
reason="skip test if required soft dependency not available",
)
def test_save_load_inceptiontime_regressor():
"""Test saving and loading for InceptionTimeRegressor."""
with tempfile.TemporaryDirectory() as temp:
temp_dir = os.path.join(temp, "")

X, y = make_example_3d_numpy(
n_cases=10,
n_channels=1,
n_timepoints=12,
return_y=True,
regression_target=True,
)

model = InceptionTimeRegressor(
n_epochs=1,
random_state=42,
save_best_model=True,
file_path=temp_dir,
n_regressors=1,
)
model.fit(X, y)

y_pred_orig = model.predict(X)

model_files = glob.glob(
os.path.join(temp_dir, f"{model.best_file_name}*.keras")
)

loaded_model = InceptionTimeRegressor.load_model(model_paths=model_files)

assert isinstance(loaded_model, InceptionTimeRegressor)

preds = loaded_model.predict(X)
assert isinstance(preds, np.ndarray)

assert len(preds) == len(y)
np.testing.assert_array_almost_equal(preds, y_pred_orig, decimal=4)
55 changes: 55 additions & 0 deletions aeon/regression/deep_learning/tests/test_lite_time.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
"""Tests for save/load functionality of LITETimeRegressor."""

import glob
import os
import tempfile

import numpy as np
import pytest

from aeon.regression.deep_learning import LITETimeRegressor
from aeon.testing.data_generation import make_example_3d_numpy
from aeon.utils.validation._dependencies import _check_soft_dependencies


@pytest.mark.skipif(
not _check_soft_dependencies("tensorflow", severity="none"),
reason="skip test if required soft dependency not available",
)
def test_save_load_litetimeregressor_regressor():
"""Test saving and loading for LITETimeRegressor."""
with tempfile.TemporaryDirectory() as temp:
temp_dir = os.path.join(temp, "")

X, y = make_example_3d_numpy(
n_cases=10,
n_channels=1,
n_timepoints=12,
return_y=True,
regression_target=True,
)

model = LITETimeRegressor(
n_epochs=1,
random_state=42,
save_best_model=True,
file_path=temp_dir,
n_regressors=1,
)
model.fit(X, y)

y_pred_orig = model.predict(X)

model_files = glob.glob(
os.path.join(temp_dir, f"{model.best_file_name}*.keras")
)

loaded_model = LITETimeRegressor.load_model(model_paths=model_files)

assert isinstance(loaded_model, LITETimeRegressor)

preds = loaded_model.predict(X)
assert isinstance(preds, np.ndarray)

assert len(preds) == len(y)
np.testing.assert_array_almost_equal(preds, y_pred_orig, decimal=4)