Python 3.4, TensorFlow 1.3, Keras 2.0.8 and other common packages listed in requirements.txt
.
- Clone this repository
$ git clone http://141.252.12.43/adions025/maskrcnn.git
- Install dependencies
pip install -r requirements.txt
- Run setup from the repository root directory
python setup.py install
- you can find the class in src/main/damageDetection.py, allows to training your own dataset
$ python damageDetection.py train --dataset=/home/student_5/workspace/Mask_RCNN/dataset/ --weights=imagenet --logs=/home/student_5/workspace/Mask_RCNN/logs/
convert your annotations xml to json for diferences regions:
-
you can also find this file inside of dataset folder, just run this file ConverterXMLtoJson.py [moreinfo]
$ python converterXMLtoJSON.py
-
before run put your images .jpg and your .xml file inside /train and /val
-
you need to have this structure :
-
/Mask_rcnn
- /dataset
- /train
- /val
- converterXMLtoJson.py
- /dataset
- You can use binary segmentation version or multiclass, just use version.sh file
- Make sure that this file has the necessary execution permissions.
chmod +x versions.sh
- You will get two folders with the different code versions in the previous path.
- Mask R-CNN needs eggs, run you setup.py file to generate again.
- If you have installation problems, you can use the same enviroment (enviroment.yml) conda.
$ conda env create -f environment.yml
- You can now activate the enviroment
$ cconda activate myenv
- You can find more info about how to manage conda enviroments Creating an enviroment from an enviroment.yml file [moreinfo]
- Adonis González Godoy - object instance segmentation - NHL Stenden University