Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add pytorch demo script #6

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
124 changes: 124 additions & 0 deletions torch_hello_world.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
from tqdm import tqdm
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data.dataset import TensorDataset
from torch.utils.data.dataloader import DataLoader


class LinearNormalGamma(nn.Module):
def __init__(self, in_chanels, out_channels):
super().__init__()
self.linear = nn.Linear(in_chanels, out_channels*4)

def evidence(self, x):
return torch.log(torch.exp(x) + 1)

def forward(self, x):
pred = self.linear(x).view(x.shape[0], -1, 4)
mu, logv, logalpha, logbeta = [w.squeeze(-1) for w in torch.split(pred, 1, dim=-1)]
return mu, self.evidence(logv), self.evidence(logalpha) + 1, self.evidence(logbeta)


def nig_nll(y, gamma, v, alpha, beta):
two_blambda = 2 * beta * (1 + v)
nll = 0.5 * torch.log(np.pi / v) \
- alpha * torch.log(two_blambda) \
+ (alpha + 0.5) * torch.log(v * (y - gamma) ** 2 + two_blambda) \
+ torch.lgamma(alpha) \
- torch.lgamma(alpha + 0.5)

return nll


def nig_reg(y, gamma, v, alpha, beta):
error = F.l1_loss(y, gamma, reduction="none")
evi = 2 * v + alpha
return error * evi


def evidential_regresssion_loss(y, pred, coeff=1.0):
gamma, v, alpha, beta = pred
loss_nll = nig_nll(y, gamma, v, alpha, beta)
loss_reg = nig_reg(y, gamma, v, alpha, beta)
return loss_nll.mean() + coeff * loss_reg.mean()


def main():
x_train, y_train = my_data(-4, 4, 1000)
train_data = TensorDataset(x_train, y_train)
train_loader = DataLoader(train_data, batch_size=100, shuffle=True, num_workers=0)
train_iter = iter(train_loader)
x_test, y_test = my_data(-7, 7, 1000, train=False)

model = nn.Sequential(
nn.Linear(1, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
LinearNormalGamma(64, 1))
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)

for t in tqdm(range(1500)):
try:
x, y = next(train_iter)
except StopIteration:
train_iter = iter(train_loader)
x, y = next(train_iter)
loss = evidential_regresssion_loss(y, model(x), 1e-2)
if t % 10 == 9:
print(t, loss.item())

optimizer.zero_grad()
loss.backward()
optimizer.step()


y_pred = torch.cat(model(x_test), dim=-1)
plot_predictions(*[v.detach().numpy() for v in [x_train, y_train, x_test, y_test, y_pred]])


def my_data(x_min, x_max, n, train=True):
x = np.linspace(x_min, x_max, n)
x = np.expand_dims(x, -1).astype(np.float32)

sigma = 3 * np.ones_like(x) if train else np.zeros_like(x)
y = x ** 3 + np.random.normal(0, sigma).astype(np.float32)
return torch.from_numpy(x), torch.from_numpy(y)


def plot_predictions(x_train, y_train, x_test, y_test, y_pred, n_stds=4, kk=0):
x_test = x_test[:, 0]
mu, v, alpha, beta = np.split(y_pred, 4, axis=-1)
mu = mu[:, 0]
var = np.sqrt(beta / (v * (alpha - 1)))
var = np.minimum(var, 1e3)[:, 0] # for visualization

plt.figure(figsize=(5, 3), dpi=200)
plt.scatter(x_train, y_train, s=1., c='#463c3c', zorder=0, label="Train")

plt.plot(x_test, y_test, 'r--', zorder=2, label="True")
plt.plot(x_test, mu, color='#007cab', zorder=3, label="Pred")

plt.plot([-4, -4], [-150, 150], 'k--', alpha=0.4, zorder=0)
plt.plot([+4, +4], [-150, 150], 'k--', alpha=0.4, zorder=0)
for k in np.linspace(0, n_stds, 4):
plt.fill_between(
x_test, (mu - k * var), (mu + k * var),
alpha=0.3,
edgecolor=None,
facecolor='#00aeef',
linewidth=0,
zorder=1,
label="Unc." if k == 0 else None)
plt.gca().set_ylim(-150, 150)
plt.gca().set_xlim(-7, 7)
plt.legend(loc="upper left")
plt.show()


if __name__ == "__main__":
main()