-
Notifications
You must be signed in to change notification settings - Fork 96
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
from tqdm import tqdm | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import torch | ||
from torch import nn | ||
import torch.nn.functional as F | ||
from torch.utils.data.dataset import TensorDataset | ||
from torch.utils.data.dataloader import DataLoader | ||
|
||
|
||
class LinearNormalGamma(nn.Module): | ||
def __init__(self, in_chanels, out_channels): | ||
super().__init__() | ||
self.linear = nn.Linear(in_chanels, out_channels*4) | ||
|
||
def evidence(self, x): | ||
return torch.log(torch.exp(x) + 1) | ||
|
||
def forward(self, x): | ||
pred = self.linear(x).view(x.shape[0], -1, 4) | ||
mu, logv, logalpha, logbeta = [w.squeeze(-1) for w in torch.split(pred, 1, dim=-1)] | ||
return mu, self.evidence(logv), self.evidence(logalpha) + 1, self.evidence(logbeta) | ||
|
||
|
||
def nig_nll(y, gamma, v, alpha, beta): | ||
two_blambda = 2 * beta * (1 + v) | ||
nll = 0.5 * torch.log(np.pi / v) \ | ||
- alpha * torch.log(two_blambda) \ | ||
+ (alpha + 0.5) * torch.log(v * (y - gamma) ** 2 + two_blambda) \ | ||
+ torch.lgamma(alpha) \ | ||
- torch.lgamma(alpha + 0.5) | ||
|
||
return nll | ||
|
||
|
||
def nig_reg(y, gamma, v, alpha, beta): | ||
error = F.l1_loss(y, gamma, reduction="none") | ||
evi = 2 * v + alpha | ||
return error * evi | ||
|
||
|
||
def evidential_regresssion_loss(y, pred, coeff=1.0): | ||
gamma, v, alpha, beta = pred | ||
loss_nll = nig_nll(y, gamma, v, alpha, beta) | ||
loss_reg = nig_reg(y, gamma, v, alpha, beta) | ||
return loss_nll.mean() + coeff * loss_reg.mean() | ||
|
||
|
||
def main(): | ||
x_train, y_train = my_data(-4, 4, 1000) | ||
train_data = TensorDataset(x_train, y_train) | ||
train_loader = DataLoader(train_data, batch_size=100, shuffle=True, num_workers=0) | ||
train_iter = iter(train_loader) | ||
x_test, y_test = my_data(-7, 7, 1000, train=False) | ||
|
||
model = nn.Sequential( | ||
nn.Linear(1, 64), | ||
nn.ReLU(), | ||
nn.Linear(64, 64), | ||
nn.ReLU(), | ||
LinearNormalGamma(64, 1)) | ||
print(model) | ||
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4) | ||
|
||
for t in tqdm(range(1500)): | ||
try: | ||
x, y = next(train_iter) | ||
except StopIteration: | ||
train_iter = iter(train_loader) | ||
x, y = next(train_iter) | ||
loss = evidential_regresssion_loss(y, model(x), 1e-2) | ||
if t % 10 == 9: | ||
print(t, loss.item()) | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
|
||
y_pred = torch.cat(model(x_test), dim=-1) | ||
plot_predictions(*[v.detach().numpy() for v in [x_train, y_train, x_test, y_test, y_pred]]) | ||
|
||
|
||
def my_data(x_min, x_max, n, train=True): | ||
x = np.linspace(x_min, x_max, n) | ||
x = np.expand_dims(x, -1).astype(np.float32) | ||
|
||
sigma = 3 * np.ones_like(x) if train else np.zeros_like(x) | ||
y = x ** 3 + np.random.normal(0, sigma).astype(np.float32) | ||
return torch.from_numpy(x), torch.from_numpy(y) | ||
|
||
|
||
def plot_predictions(x_train, y_train, x_test, y_test, y_pred, n_stds=4, kk=0): | ||
x_test = x_test[:, 0] | ||
mu, v, alpha, beta = np.split(y_pred, 4, axis=-1) | ||
mu = mu[:, 0] | ||
var = np.sqrt(beta / (v * (alpha - 1))) | ||
var = np.minimum(var, 1e3)[:, 0] # for visualization | ||
|
||
plt.figure(figsize=(5, 3), dpi=200) | ||
plt.scatter(x_train, y_train, s=1., c='#463c3c', zorder=0, label="Train") | ||
|
||
plt.plot(x_test, y_test, 'r--', zorder=2, label="True") | ||
plt.plot(x_test, mu, color='#007cab', zorder=3, label="Pred") | ||
|
||
plt.plot([-4, -4], [-150, 150], 'k--', alpha=0.4, zorder=0) | ||
plt.plot([+4, +4], [-150, 150], 'k--', alpha=0.4, zorder=0) | ||
for k in np.linspace(0, n_stds, 4): | ||
plt.fill_between( | ||
x_test, (mu - k * var), (mu + k * var), | ||
alpha=0.3, | ||
edgecolor=None, | ||
facecolor='#00aeef', | ||
linewidth=0, | ||
zorder=1, | ||
label="Unc." if k == 0 else None) | ||
plt.gca().set_ylim(-150, 150) | ||
plt.gca().set_xlim(-7, 7) | ||
plt.legend(loc="upper left") | ||
plt.show() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |