-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_utils.py
271 lines (233 loc) · 13.1 KB
/
_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import numpy as np
import scanpy as sc
import pandas as pd
import seaborn as sns
import torch
from pomegranate.distributions import Poisson
from pomegranate.gmm import GeneralMixtureModel
from scipy.spatial.distance import cosine
import seaborn as sns
from matplotlib import pyplot as plt
from matplotlib.gridspec import GridSpec
sns.reset_orig()
sc.settings._vector_friendly = True
sc.settings.n_jobs = -1
# p9.theme_set(p9.theme_classic)
plt.rcParams["svg.fonttype"] = "none"
plt.rcParams["pdf.fonttype"] = 42
plt.rcParams["savefig.transparent"] = True
plt.rcParams["figure.figsize"] = (4, 4)
plt.rcParams["axes.titlesize"] = 15
plt.rcParams["axes.titleweight"] = 500
plt.rcParams["axes.titlepad"] = 8.0
plt.rcParams["axes.labelsize"] = 14
plt.rcParams["axes.labelweight"] = 500
plt.rcParams["axes.linewidth"] = 1.2
plt.rcParams["axes.labelpad"] = 6.0
plt.rcParams["axes.spines.top"] = False
plt.rcParams["axes.spines.right"] = False
plt.rcParams["font.size"] = 11
# plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = ['Helvetica', "Computer Modern Sans Serif", "DejaVU Sans"]
plt.rcParams['font.weight'] = 500
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['xtick.minor.size'] = 1.375
plt.rcParams['xtick.major.size'] = 2.75
plt.rcParams['xtick.major.pad'] = 2
plt.rcParams['xtick.minor.pad'] = 2
plt.rcParams['ytick.labelsize'] = 12
plt.rcParams['ytick.minor.size'] = 1.375
plt.rcParams['ytick.major.size'] = 2.75
plt.rcParams['ytick.major.pad'] = 2
plt.rcParams['ytick.minor.pad'] = 2
plt.rcParams["legend.fontsize"] = 12
plt.rcParams['legend.handlelength'] = 1.4
plt.rcParams['legend.numpoints'] = 1
plt.rcParams['legend.scatterpoints'] = 3
plt.rcParams['lines.linewidth'] = 1.7
DPI = 300
def prettify_axis(ax, all_=False):
if not all_:
# Hide the right and top spines
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Only show ticks on the left and bottom spines
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
else:
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['top'].set_visible(False)
def compute_umap_embedding(adata, representation_key, n_comps=20, n_neighbors=20, min_dist_umap=0.3, show=False, key=None, extra_save='', batch_key='patient'):
if n_comps is not None:
adata.X = adata.layers[representation_key].copy()
sc.pp.normalize_total(adata)
sc.pp.sqrt(adata)
sc.tl.pca(adata)
if 'harmony' in key:
from harmony import harmonize
adata.obsm['X_pca_harmony'] = harmonize(adata.obsm['X_pca'], adata.obs, batch_key=batch_key)
neighbor_key='X_pca_harmony'
extra_save +='_harmony'
else:
neighbor_key='X_pca'
else:
neighbor_key = representation_key
sc.pp.neighbors(adata, use_rep=neighbor_key, n_neighbors=n_neighbors, method='rapids')
sc.tl.umap(adata, min_dist=min_dist_umap, method='rapids')
sc.tl.louvain(adata, resolution=0.3, flavor='rapids')
sc.pl.umap(
adata, color=["louvain", "cluster", "diffusion_proportion", "total_counts"],
frameon=False, ncols=2, save=f'_{representation_key}{extra_save}.pdf', show=show)
if key:
adata.obsm[f'X_umap_{key}'] = adata.obsm['X_umap'].copy()
if n_comps:
adata.obsm[f'X_pca_{key}'] = adata.obsm['X_pca'].copy()
def cosine_distance(adata, marker_list, layer_key='counts', output_dir=''):
adata.uns['cosine_distances_' + layer_key] = pd.DataFrame(0, index=marker_list, columns=marker_list)
for ind_x, gene_x in enumerate(marker_list):
for ind_y, gene_y in enumerate(marker_list):
if ind_x<ind_y:
adata.uns['cosine_distances_' + layer_key].loc[gene_x, gene_y] = 1 - cosine(
u=adata.obsm['counts'][gene_x].values, v=adata.obsm['counts'][gene_y].values)
else:
adata.uns['cosine_distances_' + layer_key].loc[gene_x, gene_y] = 1 - cosine(
u=adata.obsm[layer_key][gene_x].values, v=adata.obsm[layer_key][gene_y].values)
plt.figure(figsize=(40, 40), dpi=DPI)
sns.set(font_scale=1.4) # for label size
sns.heatmap(adata.uns['cosine_distances_' + layer_key], annot=True, annot_kws={"size": 8},
square=True, mask=np.identity(len(marker_list)), linecolor='black', fmt=".2f",
cmap='viridis', linewidths=1.2, vmax=0.2)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, horizontalalignment='right')
ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
plt.savefig(f'{output_dir}/cosine_distances_{layer_key}.pdf')
def cosine_distance_celltype(adata, marker_dict, layer_key='counts', output_dir="", vmax=0.5, extra_save=''):
adata.uns['cosine_distances_ct_' + layer_key] = pd.DataFrame(
0, index=marker_dict.keys(), columns=marker_dict.keys())
for ind_x, ct_x in enumerate(marker_dict.keys()):
for ind_y, ct_y in enumerate(marker_dict.keys()):
if ind_x<ind_y:
adata.uns['cosine_distances_ct_' + layer_key].loc[ct_x, ct_y] = 1 - cosine(
u=np.sum(adata.obsm['counts'][marker_dict[ct_x]], axis=1),
v=np.sum(adata.obsm['counts'][marker_dict[ct_y]], axis=1),
)
else:
adata.uns['cosine_distances_ct_' + layer_key].loc[ct_x, ct_y] = 1 - cosine(
u=np.sum(adata.obsm[layer_key][marker_dict[ct_x]], axis=1),
v=np.sum(adata.obsm[layer_key][marker_dict[ct_y]], axis=1),
)
plt.figure(figsize=(10, 10), dpi=DPI)
sns.set(font_scale=1.4) # for label size
ax = sns.heatmap(adata.uns['cosine_distances_ct_' + layer_key], annot=True, annot_kws={"size": 8},
square=True, linecolor='black', fmt=".2f", mask=np.identity(len(marker_dict.keys())),
cmap='viridis', linewidths=1.2, vmax=vmax)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, horizontalalignment='right')
ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
plt.savefig(f'{output_dir}/cosine_distances_ct_{extra_save}_{layer_key}.pdf')
def double_positive_pmm(adata, marker_list, marker_dict=None, layer_key='counts', output_dir="", file_save='', vmax=0.3):
if True: # 'positive_pmm_counts' not in adata.obsm:
adata.obsm['positive_pmm_counts'] = pd.DataFrame(
0, index=adata.obs_names, columns=marker_list)
for gene_x in marker_list:
model = GeneralMixtureModel(
[Poisson([0.001], inertia=0.99), Poisson([0.5], inertia=0.999)], verbose=False).cuda()
model_fit = model.fit(
torch.tensor(adata.obsm['counts'][gene_x].values[..., np.newaxis]).cuda())
adata.obsm['positive_pmm_counts'][gene_x] = model_fit.predict(torch.tensor(adata.obsm['counts'][gene_x].values[..., np.newaxis]).cuda()).cpu()
adata.obsm[f'positive_pmm_{layer_key}'] = pd.DataFrame(
0, index=adata.obs_names, columns=marker_list)
for gene_x in marker_list:
model = GeneralMixtureModel(
[Poisson([0.001], inertia=0.99), Poisson([0.5], inertia=0.999)], verbose=False).cuda()
model_fit = model.fit(
torch.tensor(adata.obsm[layer_key][gene_x].values[..., np.newaxis]).cuda())
adata.obsm[f'positive_pmm_{layer_key}'][gene_x] = model_fit.predict(torch.tensor(adata.obsm[layer_key][gene_x].values[..., np.newaxis]).cuda()).cpu()
adata.uns[f'double_positive_{layer_key}'] = pd.DataFrame(
0, index=marker_list, columns=marker_list)
for ind_x, gene_x in enumerate(marker_list):
for ind_y, gene_y in enumerate(marker_list):
if ind_x<ind_y:
positives = adata.obsm['positive_pmm_counts'][[gene_x, gene_y]].sum(1)
adata.uns[f'double_positive_{layer_key}'].loc[gene_x, gene_y] = np.sum(positives==2) / np.sum(positives>0) if np.sum(positives)>0 else None
else:
positives = adata.obsm[f'positive_pmm_{layer_key}'][[gene_x, gene_y]].sum(1)
adata.uns[f'double_positive_{layer_key}'].loc[gene_x, gene_y] = np.sum(positives==2) / np.sum(positives>0) if np.sum(positives)>0 else None
fig = plt.figure(figsize=(40, 40), dpi=DPI)
gs = GridSpec(1, 1)
ax = fig.add_subplot(gs[0])
sns.set(font_scale=1.) # for label size
sns.heatmap(adata.uns[f'double_positive_{layer_key}'], annot=True, annot_kws={"size": 6},
square=True, linecolor='black', fmt=".1%", mask=np.identity(len(marker_list)),
cmap='viridis', linewidths=1.2, vmax=vmax, xticklabels=True, yticklabels=True, ax=ax)
if marker_dict:
current_pos = 0
for group, genes in marker_dict.items():
gene_count = len(genes)
if gene_count > 0:
position = (current_pos, current_pos + gene_count - 1)
current_pos += gene_count
ax.text((position[0] + position[1]) / 2, - 1.3, group, ha='center', va='bottom', color='navy', fontsize=12)
ax.plot([position[0] + 0.5, position[1] + 0.5], [- 0.5, - 0.5], lw=4, c='navy')
ax.set_ylim([len(marker_list), -2])
plt.subplots_adjust(top=0.9, bottom=0.5, left=0.07, right=0.93, hspace=0.2, wspace=0.2)
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, horizontalalignment='right')
ax.set_yticklabels(ax.get_yticklabels(), rotation=0)
plt.savefig(f'{output_dir}/double_positives_{layer_key}{file_save}.pdf')
def gene_gene_scatter_plots(adata, marker_dict, layer_key='counts', output_dir=""):
ct_marker_dict = {}
for ct in marker_dict.keys():
ct_marker_dict[ct] = marker_dict[ct][
np.argmax(np.sum(adata.obsm['generated_expression'].loc[:, marker_dict[ct]], axis=0))]
fig, axs = plt.subplots(len(marker_dict.keys()), len(marker_dict.keys()), figsize=(20,20))
for ind_x, ct_x in enumerate(marker_dict):
for ind_y, ct_y in enumerate(marker_dict):
if ind_x > ind_y:
adata.obs['double_positive'] = adata.obsm['positive_pmm_' + layer_key][
[ct_marker_dict[ct_x], ct_marker_dict[ct_y]]].sum(1)
adata.obs['double_positive'] = adata.obs['double_positive'].astype(str)
#palette = {'0': '#0000EE', '1': '#3D9140', '2': '#DC143C', '3': '#DC143C'}
adata.uns['double_positive_colors'] = ['#1f77b4', '#ff7f0e', '#2ca02c']
sc.pl.scatter(adata, x=ct_marker_dict[ct_x], y=ct_marker_dict[ct_y], use_raw=False, layers=layer_key, title='',
show=False, ax=axs[ind_x, ind_y], color='double_positive')
prettify_axis(axs[ind_x, ind_y])
axs[ind_x, ind_y].get_legend().remove()
else:
axs[ind_x, ind_y].set_visible(False)
plt.tight_layout()
plt.savefig(f'{output_dir}/gene_gene_scatter_{layer_key}.pdf')
def double_positive_boxplot(adata, gene_pairs, save_key='', show=False):
ranges = [0] + [i/10 for i in np.arange(5, 11)]
index = pd.MultiIndex.from_tuples(gene_pairs)
dp_ct_counts = pd.DataFrame(index=index, columns=ranges[1:])
dp_ct_generated = pd.DataFrame(index=index, columns=ranges[1:])
for index, i in enumerate(ranges[1:]):
for gene_x, gene_y in gene_pairs:
subset = adata[np.logical_and(adata.obs['true_proportion']>ranges[index], adata.obs['true_proportion']<ranges[index+1])]
positives_counts = subset.obsm['positive_pmm_counts'][[gene_x, gene_y]].sum(1)
positives_generated = subset.obsm[f'positive_pmm_generated_expression'][[gene_x, gene_y]].sum(1)
dp_ct_counts.loc[(gene_x, gene_y), i] = (np.sum(positives_counts==2) / np.sum(positives_counts>0) if np.sum(positives_counts)>0 else -0.01)
dp_ct_generated.loc[(gene_x, gene_y), i] = (np.sum(positives_generated==2) / np.sum(positives_generated>0) if np.sum(positives_generated)>0 else -0.01)
dp_ct_counts_df = pd.DataFrame(dp_ct_counts).melt()
dp_ct_generated_df = pd.DataFrame(dp_ct_generated).melt()
dp_ct_counts_df['source'] = 'Measured'
dp_ct_generated_df['source'] = 'Generated'
# Concatenate the dataframes
df = pd.concat([dp_ct_counts_df, dp_ct_generated_df])
# Create a color palette
palette = {'Measured': (1, 0, 0, 0.2), 'Generated': (0, 0, 1, 0.2)} # red and blue with alpha=0.2
palette2 = {'Measured': (0.5, 0.5, 0.5, 0.2), 'Generated': (0.5, 0.5, 0.5, 0.2)} # red and blue with alpha=0.2
# Create the dotplot
plt.figure(figsize=(12, 8))
sns.set(style='white')
violin_parts = sns.violinplot(df, y='value', x='variable', hue='source', palette=palette, split=True, inner=None)
for pc in violin_parts.collections:
pc.set_alpha(0.8)
# Create the boxplot with a third of the width and black color
sns.boxplot(df, y='value', x='variable', hue='source', width=0.6, palette=palette2, fliersize=1.5, gap=0.5)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.savefig(f'overlapping_{save_key}.pdf')
if show:
plt.show()