Adversarial-CAE is a good framework for face synthesize and data arguement. It has been originally introduced in this research GCN
article & Pix2Pix
article
This repository contains a tensorflow implementation of Adversarial-CAE.
We used two kinds of datasets, self dataset and KDEF For the first time to run, you should prepare data first, run command:
python main.py \
--generate_data \
--dataset_dir DATASET_DIR \
It will generate data from dataset directory, and if you want to use extra data/two dataset
python main.py \
--generate_data \
--use_extra_data \
--dataset_dir DATASET_DIR \
--extra_data_dir EXTRA_DATA_DIR
If your self dataset's quality is not so good, you can perform face alignment to your own dataset, just add params
--face_align
When second run main.py, maybe data file is exist, please remove param
--generate_data && --dataset_dir DATASET_DIR
At the test/sample time, you just need run
python main.py --sampling