Skip to content
forked from fanq15/FewX

FewX is an open-source toolbox on top of Detectron2 for data-limited instance-level recognition tasks.

Notifications You must be signed in to change notification settings

YangYang-DLUT/FewX

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FewX

FewX is an open source toolbox on top of Detectron2 for data-limited instance-level recognition tasks, e.g., few-shot object detection, few-shot instance segmentation, partially supervised instance segmentation and so on.

All data-limited instance-level recognition works from Qi Fan (HKUST, [email protected]) are open-sourced here.

To date, FewX implements the following algorithms:

Highlights

  • State-of-the-art performance.
    • FSOD is the best few-shot object detection model. (This model can be directly applied to novel classes without finetuning. And finetuning can bring better performance.)
    • CPMask is the best partially supervised/few-shot instance segmentation model.
  • Easy to use. You only need to run 3 code lines to conduct the entire experiment.
    • Install Pre-Built Detectron2 in one code line.
    • Prepare dataset in one code line. (You need to first download the dataset and change the data path in the script.)
    • Training and evaluation in one code line.

Updates

  • FewX has been released. (09/08/2020)

Results on MS COCO

Few Shot Object Detection

Method Training Dataset Evaluation way&shot box AP download
FSOD (paper) COCO (non-voc) full-way 10-shot 11.1 -
FSOD (this implementation) COCO (non-voc) full-way 10-shot 12.0 model | metrics

The results are reported on the COCO voc subset with ResNet-50 backbone.

The model only trained on base classes is base model .

You can reference the original FSOD implementation on the Few-Shot-Object-Detection-Dataset.

Step 1: Installation

You only need to install detectron2. We recommend the Pre-Built Detectron2 (Linux only) version with pytorch 1.7. I use the Pre-Built Detectron2 with CUDA 10.1 and pytorch 1.7 and you can run this code to install it.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.7/index.html

Step 2: Prepare dataset

  • Prepare for coco dataset following this instruction.

  • cd datasets, change the DATA_ROOT in the generate_support_data.sh to your data path and run sh generate_support_data.sh.

cd FewX/datasets
sh generate_support_data.sh

Step 3: Training and Evaluation

Run sh all.sh in the root dir. (This script uses 4 GPUs. You can change the GPU number. If you use 2 GPUs with unchanged batch size (8), please halve the learning rate.)

cd FewX
sh all.sh

TODO

  • Add FSVOD and CPMask codes to this repo.
  • Add other dataset results to FSOD.
  • Add CPMask code with partially supervised instance segmentation, fully supervised instance segmentation and few-shot instance segmentation.

Citing FewX

If you use this toolbox in your research or wish to refer to the baseline results, please use the following BibTeX entries.

@inproceedings{fan2021fsvod,
  title={Few-Shot Video Object Detection},
  author={Fan, Qi and Tang, Chi-Keung and Tai, Yu-Wing},
  booktitle={ECCV},
  year={2022}
}
@inproceedings{fan2020cpmask,
  title={Commonality-Parsing Network across Shape and Appearance for Partially Supervised Instance Segmentation},
  author={Fan, Qi and Ke, Lei and Pei, Wenjie and Tang, Chi-Keung and Tai, Yu-Wing},
  booktitle={ECCV},
  year={2020}
}
@inproceedings{fan2020fsod,
  title={Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector},
  author={Fan, Qi and Zhuo, Wei and Tang, Chi-Keung and Tai, Yu-Wing},
  booktitle={CVPR},
  year={2020}
}

Special Thanks

Detectron2, AdelaiDet, centermask2

About

FewX is an open-source toolbox on top of Detectron2 for data-limited instance-level recognition tasks.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Shell 0.7%