-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #12 from VishwamAI/feature/llm-ollama-integration
Integrate ollama API into response generation module
- Loading branch information
Showing
5 changed files
with
332 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,45 @@ | ||
import os | ||
import requests | ||
from routellm import RouteLLMController | ||
|
||
class ResponseGenerator: | ||
def __init__(self): | ||
# Placeholder for future implementation | ||
pass | ||
# Initialize RouteLLM controller | ||
self.controller = RouteLLMController( | ||
router="gpt-3.5-turbo", | ||
models=["gpt-3.5-turbo", "gpt-4"], | ||
api_key=os.environ.get('ROUTELLM_API_KEY') | ||
) | ||
# Initialize ollama API endpoint | ||
self.ollama_api_url = "http://localhost:11434/api/generate" | ||
|
||
def generate_response(self, threat_level): | ||
# Generate a response based on the threat level | ||
# Generate a response based on the threat level using RouteLLM | ||
prompt = self._create_prompt(threat_level) | ||
response = self.controller.chat.completions.create( | ||
model="router:0.01", # Use router with 0.01 cost threshold | ||
messages=[{"role": "system", "content": "You are an AI assistant for threat assessment and response generation."}, | ||
{"role": "user", "content": prompt}] | ||
) | ||
return response.choices[0].message.content | ||
|
||
def generate_response_ollama(self, threat_level): | ||
# Generate a response based on the threat level using ollama | ||
prompt = self._create_prompt(threat_level) | ||
payload = { | ||
"model": "llama3.1", | ||
"prompt": prompt | ||
} | ||
response = requests.post(self.ollama_api_url, json=payload) | ||
if response.status_code == 200: | ||
return response.json()['response'] | ||
else: | ||
return f"Error: Unable to generate response. Status code: {response.status_code}" | ||
|
||
def _create_prompt(self, threat_level): | ||
if threat_level < 0.3: | ||
return "No significant threat detected. Continue monitoring." | ||
return "Generate a response for a low threat level situation." | ||
elif threat_level < 0.7: | ||
return "Moderate threat detected. Increase vigilance and prepare countermeasures." | ||
return "Generate a response for a moderate threat level situation." | ||
else: | ||
return "High threat detected. Activate all defense systems and initiate containment protocols." | ||
return "Generate a response for a high threat level situation." |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
/* Global Styles */ | ||
body { | ||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif; | ||
line-height: 1.6; | ||
color: #24292e; | ||
margin: 0; | ||
padding: 0; | ||
background-color: #f6f8fa; | ||
} | ||
|
||
.container { | ||
max-width: 1200px; | ||
margin: 0 auto; | ||
padding: 0 20px; | ||
display: flex; | ||
} | ||
|
||
/* Header Styles */ | ||
header { | ||
background-color: #ffffff; | ||
color: #24292e; | ||
padding: 20px 0; | ||
border-bottom: 1px solid #e1e4e8; | ||
} | ||
|
||
header h1 { | ||
margin: 0; | ||
font-size: 2em; | ||
font-weight: 600; | ||
} | ||
|
||
nav { | ||
background-color: #f6f8fa; | ||
padding: 20px; | ||
width: 250px; | ||
height: calc(100vh - 60px); | ||
position: fixed; | ||
overflow-y: auto; | ||
} | ||
|
||
nav ul { | ||
list-style-type: none; | ||
padding: 0; | ||
} | ||
|
||
nav ul li { | ||
margin-bottom: 10px; | ||
} | ||
|
||
nav ul li a { | ||
color: #0366d6; | ||
text-decoration: none; | ||
font-weight: 500; | ||
display: block; | ||
padding: 5px 0; | ||
} | ||
|
||
nav ul li a:hover { | ||
color: #0246a2; | ||
} | ||
|
||
/* Main Content Styles */ | ||
main { | ||
flex-grow: 1; | ||
padding: 40px; | ||
margin-left: 250px; | ||
background-color: #ffffff; | ||
min-height: calc(100vh - 60px); | ||
} | ||
|
||
section { | ||
margin-bottom: 40px; | ||
} | ||
|
||
h2 { | ||
color: #24292e; | ||
border-bottom: 1px solid #e1e4e8; | ||
padding-bottom: 10px; | ||
font-weight: 600; | ||
} | ||
|
||
h3 { | ||
color: #24292e; | ||
font-weight: 600; | ||
} | ||
|
||
ul { | ||
padding-left: 20px; | ||
} | ||
|
||
/* Footer Styles */ | ||
footer { | ||
background-color: #ffffff; | ||
color: #586069; | ||
padding: 20px 0; | ||
text-align: center; | ||
border-top: 1px solid #e1e4e8; | ||
} | ||
|
||
footer a { | ||
color: #0366d6; | ||
text-decoration: none; | ||
} | ||
|
||
/* Responsive Design */ | ||
@media (max-width: 768px) { | ||
.container { | ||
flex-direction: column; | ||
} | ||
|
||
nav { | ||
width: 100%; | ||
height: auto; | ||
position: static; | ||
padding: 10px; | ||
} | ||
|
||
main { | ||
margin-left: 0; | ||
padding: 20px; | ||
} | ||
|
||
header h1 { | ||
font-size: 1.5em; | ||
} | ||
} | ||
|
||
/* Accessibility */ | ||
a:focus, button:focus { | ||
outline: 2px solid #0366d6; | ||
} | ||
|
||
.sr-only { | ||
position: absolute; | ||
width: 1px; | ||
height: 1px; | ||
padding: 0; | ||
margin: -1px; | ||
overflow: hidden; | ||
clip: rect(0, 0, 0, 0); | ||
white-space: nowrap; | ||
border-width: 0; | ||
} |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
<!DOCTYPE html> | ||
<html lang="en"> | ||
<head> | ||
<meta charset="UTF-8"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||
<title>PikasuBirdAi Project Documentation</title> | ||
<link rel="stylesheet" href="css/styles.css"> | ||
</head> | ||
<body> | ||
<header> | ||
<h1>PikasuBirdAi Project</h1> | ||
<nav> | ||
<ul> | ||
<li><a href="#hardware-requirements">Hardware Requirements</a></li> | ||
<li><a href="#technical-specifications">Technical Specifications</a></li> | ||
<li><a href="#integration-plans">Integration Plans</a></li> | ||
<li><a href="#future-considerations">Future Considerations</a></li> | ||
</ul> | ||
</nav> | ||
</header> | ||
|
||
<main> | ||
<section id="hardware-requirements"> | ||
<h2>Hardware Requirements</h2> | ||
<p>The PikasuBirdAi project requires specialized hardware components to ensure optimal performance in bird detection, identification, and analysis. The following key hardware components are essential:</p> | ||
<h3>1. High-Performance Server Processing</h3> | ||
<ul> | ||
<li><strong>Nvidia A100 Tensor Core GPU:</strong> Recommended for state-of-the-art AI and HPC workloads, ideal for server-based processing of complex bird detection algorithms.</li> | ||
<li><strong>AMD Instinct MI250X:</strong> Suitable for high-performance AI and scientific computing, perfect for training and running sophisticated bird analysis models.</li> | ||
</ul> | ||
<h3>2. On-Device Processing</h3> | ||
<ul> | ||
<li><strong>Apple Neural Engine (in A16 Bionic):</strong> Ideal for iOS-based mobile applications for field bird identification.</li> | ||
<li><strong>Qualcomm Snapdragon 8 Gen 2 AI Engine:</strong> Recommended for Android-based mobile applications and field-deployable units.</li> | ||
</ul> | ||
<h3>3. Cloud-Based Processing</h3> | ||
<ul> | ||
<li><strong>AWS Trainium:</strong> Excellent for scalable processing of large datasets and complex model training in cloud environments.</li> | ||
</ul> | ||
<h3>4. Balanced Performance and Efficiency</h3> | ||
<ul> | ||
<li><strong>Intel Habana Gaudi2:</strong> Suitable for efficient training and deployment of bird detection models, offering a balance between performance and power efficiency.</li> | ||
</ul> | ||
<p>These hardware components are crucial for handling complex computations, reducing latency, and improving overall system performance in real-time bird monitoring and identification tasks.</p> | ||
</section> | ||
|
||
<section id="technical-specifications"> | ||
<h2>Technical Specifications</h2> | ||
<p>The following are detailed technical specifications of the key hardware components used in the PikasuBirdAi project:</p> | ||
|
||
<h3>1. Nvidia A100 Tensor Core GPU</h3> | ||
<ul> | ||
<li>Architecture: NVIDIA Ampere</li> | ||
<li>CUDA Cores: 6912</li> | ||
<li>Tensor Cores: 432 (3rd generation)</li> | ||
<li>Memory: 40GB or 80GB HBM2e</li> | ||
<li>Memory Bandwidth: Up to 2,039 GB/s</li> | ||
<li>FP32 Performance: 19.5 TFLOPS</li> | ||
<li>Tensor Float 32 (TF32) Performance: 156 TFLOPS</li> | ||
<li>Power Consumption: 400W (SXM4)</li> | ||
</ul> | ||
|
||
<h3>2. AMD Instinct MI250X</h3> | ||
<ul> | ||
<li>Architecture: CDNA 2</li> | ||
<li>Stream Processors: 14,080</li> | ||
<li>Memory: 128GB HBM2e</li> | ||
<li>Memory Bandwidth: 3.2 TB/s</li> | ||
<li>FP32 Performance: 47.9 TFLOPS</li> | ||
<li>FP16 Performance: 383 TFLOPS</li> | ||
<li>Power Consumption: 560W</li> | ||
</ul> | ||
|
||
<h3>3. Apple Neural Engine (A16 Bionic)</h3> | ||
<ul> | ||
<li>Architecture: 16-core design</li> | ||
<li>Performance: Up to 17 trillion operations per second</li> | ||
<li>Process Node: 4nm</li> | ||
<li>CPU: 6-core (2 performance + 4 efficiency)</li> | ||
<li>GPU: 5-core</li> | ||
<li>Memory: Integrated with system memory (varies by device)</li> | ||
</ul> | ||
|
||
<h3>4. Qualcomm Snapdragon 8 Gen 2</h3> | ||
<ul> | ||
<li>CPU: Octa-core Kryo (1x3.2 GHz Cortex-X3 + 2x2.8 GHz Cortex-A715 + 2x2.8 GHz Cortex-A710 + 3x2.0 GHz Cortex-A510)</li> | ||
<li>GPU: Adreno 740</li> | ||
<li>AI Engine: 4.35x AI performance improvement over previous gen</li> | ||
<li>Process Node: 4nm</li> | ||
<li>Memory: Support for LPDDR5X RAM</li> | ||
</ul> | ||
|
||
<h3>5. AWS Trainium</h3> | ||
<ul> | ||
<li>Performance: Up to 40% better price-performance vs GPU-based EC2 instances</li> | ||
<li>Optimized for: PyTorch and TensorFlow</li> | ||
<li>Integration: Seamless with AWS AI services</li> | ||
<li>Scalability: Designed for large-scale distributed training</li> | ||
</ul> | ||
|
||
<h3>6. Intel Habana Gaudi2</h3> | ||
<ul> | ||
<li>Process Node: 7nm</li> | ||
<li>Memory: 96GB HBM2e</li> | ||
<li>Connectivity: 24x 100GbE RoCE v2 ports</li> | ||
<li>AI Performance: Up to 5.6x faster than 1st gen Gaudi</li> | ||
<li>Power Efficiency: Improved performance per watt compared to GPUs</li> | ||
</ul> | ||
</section> | ||
|
||
<section id="integration-plans"> | ||
<h2>Integration Plans</h2> | ||
<p>Overview of how different hardware components will be integrated into the PikasuBirdAi system.</p> | ||
<!-- Add more detailed content here --> | ||
</section> | ||
|
||
<section id="future-considerations"> | ||
<h2>Future Considerations</h2> | ||
<p>Discussion on future hardware upgrades, scalability, and energy efficiency improvements.</p> | ||
<!-- Add more detailed content here --> | ||
</section> | ||
|
||
<section id="flying-mechanism"> | ||
<h2>Flying Mechanism</h2> | ||
<p>The PikasuBirdAi project employs advanced flying mechanisms to achieve bird-like flight:</p> | ||
<ul> | ||
<li><strong>Cycloidal Drives:</strong> Used for wing actuation, providing compact and precise control over wing movements.</li> | ||
<li><strong>Heat-Resistant Materials:</strong> Crucial for withstanding operational stresses and heat generated during flight.</li> | ||
<li><strong>Wing Design:</strong> Focuses on rigidity to prevent excessive floppiness during flapping motion, ensuring efficient flight dynamics.</li> | ||
</ul> | ||
<!-- Add diagrams or images of the flying mechanism here --> | ||
</section> | ||
|
||
<section id="internal-memory"> | ||
<h2>Internal Memory</h2> | ||
<p>The internal memory system is vital for the PikasuBirdAi's flight control and navigation:</p> | ||
<ul> | ||
<li><strong>Role in Flight Control:</strong> Enables real-time processing of sensor data and execution of flight algorithms.</li> | ||
<li><strong>Navigation Support:</strong> Stores and processes map data and flight paths for autonomous navigation.</li> | ||
<li><strong>Specifications:</strong> Utilizes high-speed, low-latency memory systems optimized for rapid data access and processing.</li> | ||
</ul> | ||
<!-- Add visual representation of the memory system architecture here --> | ||
</section> | ||
</main> | ||
|
||
<footer> | ||
<p>© 2024 PikasuBirdAi Project. All rights reserved.</p> | ||
<p>Contact: <a href="mailto:[email protected]">[email protected]</a></p> | ||
</footer> | ||
</body> | ||
</html> |