-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a1e3310
commit 4547007
Showing
1 changed file
with
116 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import pennylane as qml | ||
import numpy as np | ||
|
||
class QuantumProteinFolding: | ||
def __init__(self, num_qubits, num_layers): | ||
self.num_qubits = num_qubits | ||
self.num_layers = num_layers | ||
self.dev = qml.device("default.qubit", wires=num_qubits) | ||
self.params = np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 3)) | ||
|
||
@qml.qnode(device=qml.device("default.qubit", wires=1)) | ||
def qubit_layer(params, input_val): | ||
qml.RX(input_val, wires=0) | ||
qml.RY(params[0], wires=0) | ||
qml.RZ(params[1], wires=0) | ||
return qml.expval(qml.PauliZ(0)) | ||
|
||
class QuantumProteinFolding: | ||
def __init__(self, num_qubits, num_layers): | ||
self.num_qubits = num_qubits | ||
self.num_layers = num_layers | ||
self.dev = qml.device("default.qubit", wires=num_qubits) | ||
self.params = qml.numpy.array(np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 2)), requires_grad=True) | ||
|
||
def quantum_protein_layer(self, inputs, params): | ||
@qml.qnode(self.dev) | ||
def quantum_circuit(inputs, params): | ||
for i in range(len(inputs)): | ||
wire_i = i % self.num_qubits | ||
next_wire = (i + 1) % self.num_qubits | ||
# Dendrite processing | ||
qml.RX(inputs[i], wires=wire_i) | ||
qml.RY(params[wire_i, 0], wires=wire_i) | ||
|
||
# Soma processing | ||
qml.RZ(params[wire_i, 1], wires=wire_i) | ||
qml.CNOT(wires=[wire_i, next_wire]) | ||
|
||
return [qml.expval(qml.PauliZ(i % self.num_qubits)) for i in range(len(inputs))] | ||
|
||
return np.array(quantum_circuit(inputs, params)) | ||
|
||
def forward(self, amino_acid_sequence): | ||
x = np.array(amino_acid_sequence) | ||
for layer in range(self.num_layers): | ||
x = self.quantum_protein_layer(x, self.params[layer]) | ||
return x | ||
|
||
def protein_folding_simulation(self, amino_acid_sequence): | ||
""" | ||
Simulate protein folding using quantum circuits. | ||
Args: | ||
amino_acid_sequence (list): A list of numbers representing amino acids. | ||
Returns: | ||
np.array: Simulated protein structure. | ||
Raises: | ||
ValueError: If the amino_acid_sequence is empty. | ||
""" | ||
if len(amino_acid_sequence) == 0: | ||
raise ValueError("The amino acid sequence cannot be empty.") | ||
return self.forward(amino_acid_sequence) | ||
|
||
def optimize_folding(self, amino_acid_sequence, num_iterations=200): | ||
""" | ||
Optimize the protein folding simulation. | ||
Args: | ||
amino_acid_sequence (list): A list of numbers representing amino acids. | ||
num_iterations (int): Number of optimization iterations. | ||
Returns: | ||
np.array: Optimized protein structure. | ||
""" | ||
opt = qml.AdamOptimizer(stepsize=0.05) | ||
|
||
def cost(params): | ||
self.params = params.reshape(self.num_layers, self.num_qubits, 2) | ||
folded_protein = self.protein_folding_simulation(amino_acid_sequence) | ||
# New cost function: minimize the sum of squares of the folded protein | ||
return qml.math.sum(folded_protein**2) | ||
|
||
initial_params = self.params.copy() | ||
params = initial_params.flatten() | ||
|
||
for i in range(num_iterations): | ||
params, cost_val = opt.step_and_cost(cost, params) | ||
|
||
self.params = params.reshape(self.num_layers, self.num_qubits, 2) | ||
optimized_result = self.protein_folding_simulation(amino_acid_sequence) | ||
initial_result = self.forward(amino_acid_sequence) | ||
|
||
if qml.math.sum(optimized_result**2) < qml.math.sum(initial_result**2): | ||
return optimized_result | ||
else: | ||
self.params = initial_params | ||
return initial_result | ||
|
||
# Example usage | ||
if __name__ == "__main__": | ||
num_qubits = 4 | ||
num_layers = 2 | ||
qpf = QuantumProteinFolding(num_qubits, num_layers) | ||
|
||
# Example amino acid sequence (simplified as numbers) | ||
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4] | ||
|
||
# Simulate protein folding | ||
folded_protein = qpf.protein_folding_simulation(amino_acid_sequence) | ||
print("Simulated folded protein structure:", folded_protein) | ||
|
||
# Optimize folding | ||
optimized_protein = qpf.optimize_folding(amino_acid_sequence) | ||
print("Optimized folded protein structure:", optimized_protein) |