Skip to content

Commit

Permalink
push
Browse files Browse the repository at this point in the history
  • Loading branch information
kasinadhsarma authored Sep 27, 2024
1 parent a1e3310 commit 4547007
Showing 1 changed file with 116 additions and 0 deletions.
116 changes: 116 additions & 0 deletions quantum_protein_development.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
import pennylane as qml
import numpy as np

class QuantumProteinFolding:
def __init__(self, num_qubits, num_layers):
self.num_qubits = num_qubits
self.num_layers = num_layers
self.dev = qml.device("default.qubit", wires=num_qubits)
self.params = np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 3))

@qml.qnode(device=qml.device("default.qubit", wires=1))
def qubit_layer(params, input_val):
qml.RX(input_val, wires=0)
qml.RY(params[0], wires=0)
qml.RZ(params[1], wires=0)
return qml.expval(qml.PauliZ(0))

class QuantumProteinFolding:
def __init__(self, num_qubits, num_layers):
self.num_qubits = num_qubits
self.num_layers = num_layers
self.dev = qml.device("default.qubit", wires=num_qubits)
self.params = qml.numpy.array(np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 2)), requires_grad=True)

def quantum_protein_layer(self, inputs, params):
@qml.qnode(self.dev)
def quantum_circuit(inputs, params):
for i in range(len(inputs)):
wire_i = i % self.num_qubits
next_wire = (i + 1) % self.num_qubits
# Dendrite processing
qml.RX(inputs[i], wires=wire_i)
qml.RY(params[wire_i, 0], wires=wire_i)

# Soma processing
qml.RZ(params[wire_i, 1], wires=wire_i)
qml.CNOT(wires=[wire_i, next_wire])

return [qml.expval(qml.PauliZ(i % self.num_qubits)) for i in range(len(inputs))]

return np.array(quantum_circuit(inputs, params))

def forward(self, amino_acid_sequence):
x = np.array(amino_acid_sequence)
for layer in range(self.num_layers):
x = self.quantum_protein_layer(x, self.params[layer])
return x

def protein_folding_simulation(self, amino_acid_sequence):
"""
Simulate protein folding using quantum circuits.
Args:
amino_acid_sequence (list): A list of numbers representing amino acids.
Returns:
np.array: Simulated protein structure.
Raises:
ValueError: If the amino_acid_sequence is empty.
"""
if len(amino_acid_sequence) == 0:
raise ValueError("The amino acid sequence cannot be empty.")
return self.forward(amino_acid_sequence)

def optimize_folding(self, amino_acid_sequence, num_iterations=200):
"""
Optimize the protein folding simulation.
Args:
amino_acid_sequence (list): A list of numbers representing amino acids.
num_iterations (int): Number of optimization iterations.
Returns:
np.array: Optimized protein structure.
"""
opt = qml.AdamOptimizer(stepsize=0.05)

def cost(params):
self.params = params.reshape(self.num_layers, self.num_qubits, 2)
folded_protein = self.protein_folding_simulation(amino_acid_sequence)
# New cost function: minimize the sum of squares of the folded protein
return qml.math.sum(folded_protein**2)

initial_params = self.params.copy()
params = initial_params.flatten()

for i in range(num_iterations):
params, cost_val = opt.step_and_cost(cost, params)

self.params = params.reshape(self.num_layers, self.num_qubits, 2)
optimized_result = self.protein_folding_simulation(amino_acid_sequence)
initial_result = self.forward(amino_acid_sequence)

if qml.math.sum(optimized_result**2) < qml.math.sum(initial_result**2):
return optimized_result
else:
self.params = initial_params
return initial_result

# Example usage
if __name__ == "__main__":
num_qubits = 4
num_layers = 2
qpf = QuantumProteinFolding(num_qubits, num_layers)

# Example amino acid sequence (simplified as numbers)
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4]

# Simulate protein folding
folded_protein = qpf.protein_folding_simulation(amino_acid_sequence)
print("Simulated folded protein structure:", folded_protein)

# Optimize folding
optimized_protein = qpf.optimize_folding(amino_acid_sequence)
print("Optimized folded protein structure:", optimized_protein)

0 comments on commit 4547007

Please sign in to comment.