Skip to content

Commit

Permalink
added calibration script
Browse files Browse the repository at this point in the history
  • Loading branch information
Vlad St committed Feb 18, 2021
1 parent 28f943b commit 47d0f79
Show file tree
Hide file tree
Showing 7 changed files with 270 additions and 114 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -127,3 +127,5 @@ dmypy.json

# Pyre type checker
.pyre/

.vscode/*
128 changes: 128 additions & 0 deletions calibration.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
import torch
import torchvision.utils as tu
import cv2
import numpy as np
import os
import sys
import argparse
import src.models as models
from src.utils.geometric import ExtrinsicsCalculator, BoxRenderFlags
from src.utils.save_pointcloud import save_ply



STATIC_IMAGE_SIZE = (180, 320) # (height,width)
STATIC_BOX_FLAG = BoxRenderFlags.LABEL_DOWN_AS_BACKGROUND
STATIC_DEVICE = 'cpu'

def parse_arguments(args):
usage_text = (
"Calibration script."
"Usage: python calibration.py [options],"
" with [options]:"
)
parser = argparse.ArgumentParser(description=usage_text)
parser.add_argument("-d","--depth", type = str, help = "Path to depthmap", required = True)
parser.add_argument("-m","--model_path", type = str, help = "Path to saved model params", required = True)
parser.add_argument("-o","--save_path", type = str, help = "Path to save results", required = True)
parser.add_argument("-b","--box_path", type = str, help = "Path to box", default = r"data/asymmetric_box.obj")
parser.add_argument("-s","--scale", type = float, help = "Factor that converts depthmap to meters")
parser.add_argument("-i","--intrinsics", nargs=4, metavar=('fx', 'cx', 'fy', 'cy',),
help="camera instrinsic factors", type=float,
default=None)
return parser.parse_known_args(args)

def align(
model : torch.nn.Module,
depthmap : torch.Tensor,
intrinsics : torch.Tensor,
box_path : str,
device : str,
save_path : str,
box_flag : BoxRenderFlags = STATIC_BOX_FLAG,
confidence : float = 0.75,
) -> None:
os.makedirs(save_path, exist_ok=True)
predictions = model(depthmap)[1]
_, nclasses, height, width = predictions.shape

labels = predictions.argmax(dim = 1, keepdim = True)
one_hot = torch.nn.functional.one_hot(labels.squeeze(),num_classes = nclasses).permute(2,0,1).unsqueeze(0)

extrinsics_calculator = ExtrinsicsCalculator(box_path, device, box_flag)

extrinsics, _, pointclouds = extrinsics_calculator.forward(depthmap, one_hot, intrinsics)
extrinsics = extrinsics.squeeze().numpy().T
pointclouds = pointclouds[0].permute(1,2,0).reshape(-1,3).numpy()
save_ply(os.path.join(save_path, "original.ply"),pointclouds , scale = 1)
pcloud_homo = np.concatenate([pointclouds, np.ones((height * width, 1))], axis = 1)
transformed_pcloud = pcloud_homo.dot(extrinsics)
save_ply(os.path.join(save_path, "transformed.ply"),transformed_pcloud[:,:3], scale = 1)
np.savetxt(os.path.join(save_path, "extrinsics.txt"), extrinsics)
print(extrinsics)



def loadModel(
path_to_model : str,
device : str
) -> torch.nn.Module:
print("Loading previously saved model from {}".format(path_to_model))
checkpoint = torch.load(path_to_model)
model_params = {
'width': 320,
'height': 180,
'ndf': 32,
'upsample_type': "nearest",
}


model_name = checkpoint['model_name']
if 'nclasses' in checkpoint:
nclasses = checkpoint['nclasses']

if 'ndf' in checkpoint:
model_params['ndf'] = checkpoint['ndf']

model_params['nclasses'] = nclasses
model = models.get_UNet_model(model_name, model_params)
model.load_state_dict(checkpoint['state_dict'])
model.to(device)
model.eval()
return model

def loadData(
path_to_depthmap : str,
scale : float
) -> torch.Tensor:
depth_np = cv2.imread(path_to_depthmap, -1).astype(np.float32)
depth_np = cv2.resize(depth_np, STATIC_IMAGE_SIZE[::-1], interpolation=cv2.INTER_NEAREST)
depth_t = torch.from_numpy(depth_np).unsqueeze(0).unsqueeze(0) / scale
return depth_t

if __name__ == "__main__":
args, _ = parse_arguments(sys.argv)
intrinsics = torch.FloatTensor([
args.intrinsics[0],
0.0,
args.intrinsics[1],
0.0,
args.intrinsics[2],
args.intrinsics[3],
0.0,
0.0,
1.0
]).view((3,3)).unsqueeze(0)

model = loadModel(args.model_path,STATIC_DEVICE)
depthmap = loadData(args.depth, args.scale)

align(
model,
depthmap,
intrinsics,
args.box_path,
STATIC_DEVICE,
args.save_path
)

Loading

0 comments on commit 47d0f79

Please sign in to comment.