Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Some results about path-cosplit maps #1167

Merged
merged 31 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from 29 commits
Commits
Show all changes
31 commits
Select commit Hold shift + click to select a range
4579ea7
If the domain is `k+1`-truncated then `k`-path-cosplittings are unique
fredrik-bakke Aug 21, 2024
76c4136
wip basic theorems about path-cosplit maps
fredrik-bakke Aug 22, 2024
8495d22
wip path-cosplit
fredrik-bakke Aug 22, 2024
79405fb
Functoriality of the action on identifications of functions
fredrik-bakke Aug 22, 2024
1411930
wip
fredrik-bakke Aug 22, 2024
c27c21f
wip path cosplit maps
fredrik-bakke Aug 23, 2024
d52ead8
`is-path-cosplit-succ-coproduct`
fredrik-bakke Aug 23, 2024
40bdbe9
Add builtin pragmas to natural number multiplication and addition (#1…
morphismz Aug 22, 2024
de4c1bb
Cleanup of finite types (#1166)
fredrik-bakke Aug 22, 2024
9a8d7a6
fix `is-retraction-retraction-left-map-triangle`
fredrik-bakke Aug 23, 2024
1465d1f
cleanup
fredrik-bakke Aug 23, 2024
027fdba
Merge branch 'master' into path-cosplit-maps-2
fredrik-bakke Aug 23, 2024
a96dba0
small cleanups
fredrik-bakke Aug 24, 2024
f0ca025
products of path-cosplit maps
fredrik-bakke Aug 24, 2024
96ba3d4
Computing the action on paths of the functorial action of Σ
fredrik-bakke Aug 24, 2024
c28c42c
nit
fredrik-bakke Aug 24, 2024
d72f6b7
`is-path-cosplit-tot`
fredrik-bakke Aug 24, 2024
771b584
`is-path-cosplit-tot`
fredrik-bakke Aug 24, 2024
e069eb9
header wording
fredrik-bakke Aug 24, 2024
82511c6
fix some text `functoriality-action-on-identifications-functions`
fredrik-bakke Aug 26, 2024
8007262
remove `coh-` prefix for computations of `ap` on different functorial…
fredrik-bakke Aug 26, 2024
7e8574c
enumerate second-order associators
fredrik-bakke Aug 26, 2024
395770c
If the domain is `k+r+2`-truncated, the type of `k`-path-cosplittings…
fredrik-bakke Sep 3, 2024
dfe8050
Coroducts of path-cosplit maps are path-cosplit
fredrik-bakke Sep 3, 2024
4f98ce3
Merge branch 'master' into path-cosplit-maps-2
fredrik-bakke Sep 22, 2024
77d7c5b
Update retractions.lagda.md
fredrik-bakke Sep 22, 2024
fc6405e
Merge branch 'master' into path-cosplit-maps-2
fredrik-bakke Sep 25, 2024
3e7d5e1
Merge branch 'master' into path-cosplit-maps-2
fredrik-bakke Oct 15, 2024
edc372a
Merge branch 'master' into path-cosplit-maps-2
fredrik-bakke Nov 5, 2024
1c349a1
remove duplicates
fredrik-bakke Nov 5, 2024
b986842
Update src/foundation/path-cosplit-maps.lagda.md
fredrik-bakke Nov 5, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 81 additions & 36 deletions src/foundation-core/functoriality-dependent-function-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types
open import foundation-core.injective-maps
open import foundation-core.retractions
open import foundation-core.type-theoretic-principle-of-choice
```

Expand All @@ -34,7 +35,7 @@ open import foundation-core.type-theoretic-principle-of-choice
```agda
htpy-map-Π :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
{f f' : (i : I) → A i → B i} (H : (i : I) → (f i) ~ (f' i)) →
{f f' : (i : I) → A i → B i} (H : (i : I) → f i ~ f' i) →
map-Π f ~ map-Π f'
htpy-map-Π H h = eq-htpy (λ i → H i (h i))

Expand All @@ -45,6 +46,32 @@ htpy-map-Π' :
htpy-map-Π' α H = htpy-map-Π (H ∘ α)
```

### The operation `map-Π` preserves composition

```agda
module _
{l1 l2 l3 l4 : Level} {I : UU l1}
{A : I → UU l2} {B : I → UU l3} {C : I → UU l4}
where

preserves-comp-map-Π :
(g : (i : I) → B i → C i)
(f : (i : I) → A i → B i) →
map-Π (λ i → g i ∘ f i) ~ map-Π g ∘ map-Π f
preserves-comp-map-Π g f = refl-htpy
```

### The operation `map-Π` preserves identity functions

```agda
module _
{l1 l2 : Level} {I : UU l1} {A : I → UU l2}
where

preserves-id-map-Π : map-Π (λ i → id {A = A i}) ~ id
preserves-id-map-Π = refl-htpy
```

### The fibers of `map-Π`

```agda
Expand All @@ -65,48 +92,50 @@ compute-fiber-map-Π' α f = compute-fiber-map-Π (f ∘ α)
### Families of equivalences induce equivalences of dependent function types

```agda
abstract
is-equiv-map-Π-is-fiberwise-equiv :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
{f : (i : I) → A i → B i} → is-fiberwise-equiv f →
is-equiv (map-Π f)
is-equiv-map-Π-is-fiberwise-equiv is-equiv-f =
is-equiv-is-contr-map
( λ g →
is-contr-equiv' _
( compute-fiber-map-Π _ g)
( is-contr-Π (λ i → is-contr-map-is-equiv (is-equiv-f i) (g i))))

equiv-Π-equiv-family :
module _
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
(e : (i : I) → A i ≃ B i) → ((i : I) → A i) ≃ ((i : I) → B i)
pr1 (equiv-Π-equiv-family e) =
map-Π (λ i → map-equiv (e i))
pr2 (equiv-Π-equiv-family e) =
is-equiv-map-Π-is-fiberwise-equiv (λ i → is-equiv-map-equiv (e i))
where

abstract
is-equiv-map-Π-is-fiberwise-equiv :
{f : (i : I) → A i → B i} → is-fiberwise-equiv f → is-equiv (map-Π f)
is-equiv-map-Π-is-fiberwise-equiv is-equiv-f =
is-equiv-is-contr-map
( λ g →
is-contr-equiv' _
( compute-fiber-map-Π _ g)
( is-contr-Π (λ i → is-contr-map-is-equiv (is-equiv-f i) (g i))))

equiv-Π-equiv-family :
(e : (i : I) → A i ≃ B i) → ((i : I) → A i) ≃ ((i : I) → B i)
equiv-Π-equiv-family e =
( map-Π (λ i → map-equiv (e i)) ,
is-equiv-map-Π-is-fiberwise-equiv (λ i → is-equiv-map-equiv (e i)))
```

### Families of equivalences induce equivalences of implicit dependent function types

```agda
is-equiv-map-implicit-Π-is-fiberwise-equiv :
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
{f : (i : I) → A i → B i} → is-fiberwise-equiv f →
is-equiv (map-implicit-Π f)
is-equiv-map-implicit-Π-is-fiberwise-equiv is-equiv-f =
is-equiv-comp _ _
( is-equiv-explicit-implicit-Π)
( is-equiv-comp _ _
( is-equiv-map-Π-is-fiberwise-equiv is-equiv-f)
( is-equiv-implicit-explicit-Π))

equiv-implicit-Π-equiv-family :
module _
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
(e : (i : I) → (A i) ≃ (B i)) → ({i : I} → A i) ≃ ({i : I} → B i)
equiv-implicit-Π-equiv-family e =
( equiv-implicit-explicit-Π) ∘e
( equiv-Π-equiv-family e) ∘e
( equiv-explicit-implicit-Π)
where

is-equiv-map-implicit-Π-is-fiberwise-equiv :
{f : (i : I) → A i → B i} → is-fiberwise-equiv f →
is-equiv (map-implicit-Π f)
is-equiv-map-implicit-Π-is-fiberwise-equiv is-equiv-f =
is-equiv-comp _ _
( is-equiv-explicit-implicit-Π)
( is-equiv-comp _ _
( is-equiv-map-Π-is-fiberwise-equiv is-equiv-f)
( is-equiv-implicit-explicit-Π))

equiv-implicit-Π-equiv-family :
(e : (i : I) → (A i) ≃ (B i)) → ({i : I} → A i) ≃ ({i : I} → B i)
equiv-implicit-Π-equiv-family e =
( equiv-implicit-explicit-Π) ∘e
( equiv-Π-equiv-family e) ∘e
( equiv-explicit-implicit-Π)
```

##### Computing the inverse of `equiv-Π-equiv-family`
Expand All @@ -127,6 +156,22 @@ module _
( eq-htpy (λ x → inv (is-section-map-inv-equiv (e x) (f x)))))
```

### Families of retracts induce retracts of dependent function types

```agda
module _
{l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3}
where

abstract
retraction-map-Π-fiberwise-retraction :
{f : (i : I) → A i → B i} →
((i : I) → retraction (f i)) → retraction (map-Π f)
retraction-map-Π-fiberwise-retraction {f} r =
( ( map-Π (λ i → map-retraction (f i) (r i))) ,
( λ h → eq-htpy (λ i → is-retraction-map-retraction (f i) (r i) (h i))))
```

## See also

- Arithmetical laws involving dependent function types are recorded in
Expand Down
44 changes: 39 additions & 5 deletions src/foundation-core/functoriality-dependent-pair-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,11 +7,13 @@ module foundation-core.functoriality-dependent-pair-types where
<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.dependent-identifications
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.families-of-equivalences
Expand Down Expand Up @@ -82,7 +84,7 @@ module _

triangle-map-Σ :
(f : A → B) (g : (x : A) → C x → D (f x)) →
(map-Σ f g) ~ (map-Σ-map-base f D ∘ tot g)
map-Σ f g ~ map-Σ-map-base f D ∘ tot g
triangle-map-Σ f g t = refl
```

Expand Down Expand Up @@ -396,16 +398,16 @@ module _
```agda
module _
{l1 l2 l3 : Level} {X : UU l1} {A : UU l2} {B : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ (g ∘ h))
(f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h)
where

fiber-triangle :
(x : X) → (fiber f x)(fiber g x)
(x : X) → fiber f x → fiber g x
pr1 (fiber-triangle .(f a) (pair a refl)) = h a
pr2 (fiber-triangle .(f a) (pair a refl)) = inv (H a)

square-tot-fiber-triangle :
( h ∘ (map-equiv-total-fiber f)) ~
( h ∘ map-equiv-total-fiber f) ~
( map-equiv-total-fiber g ∘ tot fiber-triangle)
square-tot-fiber-triangle (pair .(f a) (pair a refl)) = refl
```
Expand All @@ -420,7 +422,7 @@ module _

abstract
is-fiberwise-equiv-is-equiv-triangle :
(E : is-equiv h) → is-fiberwise-equiv (fiber-triangle f g h H)
is-equiv h → is-fiberwise-equiv (fiber-triangle f g h H)
is-fiberwise-equiv-is-equiv-triangle E =
is-fiberwise-equiv-is-equiv-tot
( is-equiv-top-is-equiv-bottom-square
Expand Down Expand Up @@ -459,6 +461,38 @@ module _
compute-map-Σ-id = refl-htpy
```

### Computing the action on identifications of `tot`

```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {X : A → UU l2} {Y : A → UU l3}
(g : (a : A) → X a → Y a) {a a' : A} {x : X a} {x' : X a'}
where

compute-ap-tot :
pair-eq-Σ ∘ ap (tot g) {a , x} {a' , x'} ~
tot (λ p q → inv (preserves-tr g p x) ∙ ap (g a') q) ∘ pair-eq-Σ
compute-ap-tot refl = refl
```

### Computing the action on identifications of the functorial action of Σ

```agda
module _
{l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : A → UU l3} (Y : B → UU l4)
(f : A → B) (g : (a : A) → X a → Y (f a)) {a a' : A} {x : X a} {x' : X a'}
where

compute-ap-map-Σ :
pair-eq-Σ ∘ ap (map-Σ Y f g) ~
map-Σ
( λ p → dependent-identification Y p (g a x) (g a' x'))
( ap f {a} {a'})
( λ p q → tr-ap f g p x ∙ ap (g a') q) ∘
pair-eq-Σ
compute-ap-map-Σ refl = refl
```

## See also

- Arithmetical laws involving dependent pair types are recorded in
Expand Down
12 changes: 12 additions & 0 deletions src/foundation-core/homotopies.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -309,6 +309,18 @@ inv-nat-htpy-id :
inv-nat-htpy-id H p = inv (nat-htpy-id H p)
```

### Conjugation by homotopies

Given a homotopy `H : f ~ g` we obtain a natural map `f x = f y → g x = g y`
given by conjugation by `H`.

```agda
conjugate-htpy :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f g : A → B}
(H : f ~ g) {x y : A} → f x = f y → g x = g y
conjugate-htpy H {x} {y} p = inv (H x) ∙ (p ∙ H y)
```

### Homotopies preserve the laws of the action on identity types

```agda
Expand Down
49 changes: 37 additions & 12 deletions src/foundation-core/retractions.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,22 @@ module _
pr2 retraction-ap = is-retraction-is-injective-retraction
```

### Retractions of homotopic maps

Given a homotopy `H : f ~ g`, then if `g` has a retraction so does `f`.

```agda
module _
{l1 l2 : Level} {A : UU l1} {B : UU l2}
{f g : A → B}
where

retraction-htpy-map : f ~ g → retraction g → retraction f
retraction-htpy-map H G =
( map-retraction g G ,
map-retraction g G ·l H ∙h is-retraction-map-retraction g G)
```

### Composites of retractions are retractions

```agda
Expand Down Expand Up @@ -176,24 +192,33 @@ that would result in a cyclic module dependency.
```agda
module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h)
(f : A → X) (g : B → X) (h : A → B) (H : g ∘ h ~ f)
(r : retraction f)
where

map-retraction-top-map-triangle : B → A
map-retraction-top-map-triangle = map-retraction f r ∘ g
map-retraction-top-map-triangle' : B → A
map-retraction-top-map-triangle' = map-retraction f r ∘ g

is-retraction-map-retraction-top-map-triangle' :
is-retraction h map-retraction-top-map-triangle'
is-retraction-map-retraction-top-map-triangle' =
(map-retraction f r ·l H) ∙h is-retraction-map-retraction f r

is-retraction-map-retraction-top-map-triangle :
is-retraction h map-retraction-top-map-triangle
is-retraction-map-retraction-top-map-triangle =
( inv-htpy (map-retraction f r ·l H)) ∙h
( is-retraction-map-retraction f r)
retraction-top-map-triangle' : retraction h
pr1 retraction-top-map-triangle' =
map-retraction-top-map-triangle'
pr2 retraction-top-map-triangle' =
is-retraction-map-retraction-top-map-triangle'

module _
{l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
(f : A → X) (g : B → X) (h : A → B) (H : f ~ g ∘ h)
(r : retraction f)
where

retraction-top-map-triangle : retraction h
pr1 retraction-top-map-triangle =
map-retraction-top-map-triangle
pr2 retraction-top-map-triangle =
is-retraction-map-retraction-top-map-triangle
retraction-top-map-triangle =
retraction-top-map-triangle' f g h (inv-htpy H) r
```

### In a commuting triangle `f ~ g ∘ h`, retractions of `g` and `h` compose to a retraction of `f`
Expand Down
1 change: 1 addition & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -190,6 +190,7 @@ open import foundation.full-subtypes public
open import foundation.function-extensionality public
open import foundation.function-types public
open import foundation.functional-correspondences public
open import foundation.functoriality-action-on-identifications-functions public
open import foundation.functoriality-cartesian-product-types public
open import foundation.functoriality-coproduct-types public
open import foundation.functoriality-dependent-function-types public
Expand Down
6 changes: 3 additions & 3 deletions src/foundation/equality-coproduct-types.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ module _

```agda
module _
{l1 l2 : Level} (A : UU l1) (B : UU l2)
{l1 l2 : Level} {A : UU l1} {B : UU l2}
where

abstract
Expand Down Expand Up @@ -313,7 +313,7 @@ module _
( ap inl)
( ap-comp (rec-coproduct f g) inl)
( H a a')
( is-emb-inl A B a a')
( is-emb-inl a a')
is-emb-coproduct H K L (inl a) (inr b') =
is-equiv-is-empty (ap (rec-coproduct f g)) (L a b')
is-emb-coproduct H K L (inr b) (inl a') =
Expand All @@ -325,7 +325,7 @@ module _
( ap inr)
( ap-comp (rec-coproduct f g) inr)
( K b b')
( is-emb-inr A B b b')
( is-emb-inr b b')
```

### Coproducts of `k+2`-truncated types are `k+2`-truncated
Expand Down
Loading
Loading