-
Notifications
You must be signed in to change notification settings - Fork 227
Support DPPL 0.37 #2550
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Support DPPL 0.37 #2550
Conversation
@@ -104,8 +105,8 @@ function Optim.optimize( | |||
options::Optim.Options=Optim.Options(); | |||
kwargs..., | |||
) | |||
ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext()) | |||
f = Optimisation.OptimLogDensity(model, ctx) | |||
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) | |
vi = DynamicPPL.setaccs!!( | |
VarInfo(model), | |
(LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator()), | |
) |
@@ -127,8 +128,8 @@ | |||
options::Optim.Options=Optim.Options(); | |||
kwargs..., | |||
) | |||
ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext()) | |||
f = Optimisation.OptimLogDensity(model, ctx) | |||
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) | |
vi = DynamicPPL.setaccs!!( | |
VarInfo(model), | |
(LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator()), | |
) |
@@ -144,9 +145,11 @@ | |||
end | |||
|
|||
function _map_optimize(model::DynamicPPL.Model, args...; kwargs...) | |||
ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext()) | |||
return _optimize(Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) | |||
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) | |
vi = DynamicPPL.setaccs!!( | |
VarInfo(model), | |
(LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator()), | |
) |
logdensity_optimum = Optimisation.OptimLogDensity( | ||
f.ldf.model, vi_optimum, f.ldf.context | ||
) | ||
logdensity_optimum = Optimisation.OptimLogDensity(f.ldf.model, vi_optimum; adtype=f.ldf.adtype) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
logdensity_optimum = Optimisation.OptimLogDensity(f.ldf.model, vi_optimum; adtype=f.ldf.adtype) | |
logdensity_optimum = Optimisation.OptimLogDensity( | |
f.ldf.model, vi_optimum; adtype=f.ldf.adtype | |
) |
VarInfo(), | ||
SamplingContext(rng, DynamicPPL.SampleFromPrior(), DynamicPPL.PriorContext()), | ||
), | ||
DynamicPPL.evaluate!!(model, vi, SamplingContext(rng, DynamicPPL.SampleFromPrior())), |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
DynamicPPL.evaluate!!(model, vi, SamplingContext(rng, DynamicPPL.SampleFromPrior())), | |
DynamicPPL.evaluate!!(model, vi, SamplingContext(rng, DynamicPPL.SampleFromPrior())) |
M<:DynamicPPL.Model, | ||
V<:DynamicPPL.VarInfo, | ||
C<:OptimizationContext, | ||
V<:DynamicPPL.AbstractVarInfo, | ||
AD<:ADTypes.AbstractADType, |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
M<:DynamicPPL.Model, | |
V<:DynamicPPL.VarInfo, | |
C<:OptimizationContext, | |
V<:DynamicPPL.AbstractVarInfo, | |
AD<:ADTypes.AbstractADType, | |
M<:DynamicPPL.Model,V<:DynamicPPL.AbstractVarInfo,AD<:ADTypes.AbstractADType |
return OptimLogDensity( | ||
DynamicPPL.LogDensityFunction(model, DynamicPPL.VarInfo(model), ctx; adtype=adtype) | ||
) | ||
function OptimLogDensity(model::DynamicPPL.Model, vi::DynamicPPL.AbstractVarInfo=DynamicPPL.VarInfo(model); adtype=AutoForwardDiff()) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
function OptimLogDensity(model::DynamicPPL.Model, vi::DynamicPPL.AbstractVarInfo=DynamicPPL.VarInfo(model); adtype=AutoForwardDiff()) | |
function OptimLogDensity( | |
model::DynamicPPL.Model, | |
vi::DynamicPPL.AbstractVarInfo=DynamicPPL.VarInfo(model); | |
adtype=AutoForwardDiff(), | |
) |
vi_joint = DynamicPPL.setaccs!!(deepcopy(vi), (LogPriorWithoutJacobianAccumulator(), LogLikelihoodAccumulator())) | ||
vi_prior = DynamicPPL.setaccs!!(deepcopy(vi), (LogPriorWithoutJacobianAccumulator(),)) | ||
vi_likelihood = DynamicPPL.setaccs!!(deepcopy(vi), (LogLikelihoodAccumulator(),)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
vi_joint = DynamicPPL.setaccs!!(deepcopy(vi), (LogPriorWithoutJacobianAccumulator(), LogLikelihoodAccumulator())) | |
vi_prior = DynamicPPL.setaccs!!(deepcopy(vi), (LogPriorWithoutJacobianAccumulator(),)) | |
vi_likelihood = DynamicPPL.setaccs!!(deepcopy(vi), (LogLikelihoodAccumulator(),)) | |
vi_joint = DynamicPPL.setaccs!!( | |
deepcopy(vi), | |
(LogPriorWithoutJacobianAccumulator(), LogLikelihoodAccumulator()), | |
) | |
vi_prior = DynamicPPL.setaccs!!( | |
deepcopy(vi), (LogPriorWithoutJacobianAccumulator(),) | |
) | |
vi_likelihood = DynamicPPL.setaccs!!( | |
deepcopy(vi), (LogLikelihoodAccumulator(),) | |
) |
value, vi = DynamicPPL.tilde_assume( | ||
DynamicPPL.childcontext(context), right, vn, vi | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
value, vi = DynamicPPL.tilde_assume( | |
DynamicPPL.childcontext(context), right, vn, vi | |
) | |
value, vi = DynamicPPL.tilde_assume(DynamicPPL.childcontext(context), right, vn, vi) |
function DynamicPPL.tilde_observe(context::ADTypeCheckContext, right, left, vi) | ||
logp, vi = DynamicPPL.tilde_observe(DynamicPPL.childcontext(context), right, left, vi) | ||
function DynamicPPL.tilde_observe!!(context::ADTypeCheckContext, right, left, vn, vi) | ||
left, vi = DynamicPPL.tilde_observe(DynamicPPL.childcontext(context), right, left, vn, vi) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶
left, vi = DynamicPPL.tilde_observe(DynamicPPL.childcontext(context), right, left, vn, vi) | |
left, vi = DynamicPPL.tilde_observe( | |
DynamicPPL.childcontext(context), right, left, vn, vi | |
) |
That is tempting, to not waste time fixing code that's on its way out. I worry though that removing the samplers will take a while still, and in the meanwhile all the accumulator stuff, and other DPPL changes that build on it, would be held back from Turing.jl. For instance, introducing ValuesAsInModelAccumulator would cut our inference time in #2542 by half. |
Currently in a very unfinished state.