Skip to content

TsinghuaDatabaseGroup/CloudDB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 

Repository files navigation

Cloud Database Papers

Continuously update the Cloud Database papers. Please inform us if there are any great papers missed :)

Table of Contents

0. Unmerged

[Monitor] Curino, C., Jones, E. P. C., Madden, S., & Balakrishnan, H. (2011). Workload-aware database monitoring and consolidation. Proceedings of the ACM SIGMOD International Conference on Management of Data, 313–324. [paper ]

1. Survey & Tutorial

[Survey] Armbrust, A. Fox, and R. Griffith, M. (2009). Above the clouds: A Berkeley view of cloud computing. University of California, Berkeley, Tech. Rep. UCB, 07–013. [paper ]

[Survey] Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C.-C., Khandelwal, A., Pu, Q., Shankar, V., Carreira, J., Krauth, K., Yadwadkar, N., Gonzalez, J. E., Popa, R. A., Stoica, I., & Patterson, D. A. (2019). Cloud Programming Simplified: A Berkeley View on Serverless Computing. [paper ]

[Survey] Li, F. (2018). Cloud native database systems at Alibaba: Opportunities and challenges. Proceedings of the VLDB Endowment, 12(12), 2263–2272. [paper ]

2. Database as a Service

[DBaaS] Depoutovitch, A., Chen, C., Chen, J., Larson, P., Lin, S., Ng, J., Cui, W., Liu, Q., Huang, W., Xiao, Y., & He, Y. (2020). Taurus Database: How to be Fast, Available, and Frugal in the Cloud. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1463–1478. [paper ]

[DBaaS] Taft, R., Lang, W., Duggan, J., Elmore, A. J., Stonebraker, M., & De Witt, D. (2016). STeP: Scalable tenant placement for managing database-as-a-service deployments. Proceedings of the 7th ACM Symposium on Cloud Computing, SoCC 2016, 388–400. [paper ]

[DBaaS] Das, S., Li, F., Narasayya, V. R., & König, A. C. (2016). Automated demand-driven resource scaling in relational database-as-a-service. Proceedings of the ACM SIGMOD International Conference on Management of Data, 26-June-2016, 1923–1934. [paper ]

[DBaaS] Narasayya, V., Menache, I., Singh, M., Li, F., Syamala, M., & Chaudhuri, S. (2015). Sharing Buffer Pool Memory in Multi-Tenant Relational. Proceedings of the VLDB Endowment, 8(7), 726-737. [paper ]

3. Auto-scaling & Partition

[Auto-scaling] Perron, M., Castro Fernandez, R., Dewitt, D., & Madden, S. (2020). Starling: A Scalable Query Engine on Cloud Functions. Proceedings of the ACM SIGMOD International Conference on Management of Data, 131–141. [paper ]

[Auto-scaling] Shen, Z., Subbiah, S., Gu, X., & Wilkes, J. (2011). CloudScale: Elastic resource scaling for multi-tenant cloud systems. Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC 2011. [paper ]

[Auto-scaling] Wu, C., Sreekanti, V., & Hellerstein, J. M. (2021). Autoscaling tiered cloud storage in Anna. VLDB Journal, 30(1), 25–43. [paper ]

[Auto-scaling] [Disaggregation] Zhang, Y., Ruan, C., Li, C., Yang, J., Cao, W., Li, F., Wang, B., Fang, J., Wang, Y., Huo, J., & Bi, C. (2021). Towards Cost-Effective and Elastic Cloud Database Deployment via Memory Disaggregation. Proc. VLDB Endow., 14(1), 1900–1912. [paper ]

[Partition] Hilprecht, B., Binnig, C., & Röhm, U. (2020). Learning a Partitioning Advisor for Cloud Databases. Proceedings of the ACM SIGMOD International Conference on Management of Data, 143–157. [paper ]

4. Disaggregation

[Disaggregation] Shan, Y., Huang, Y., Chen, Y., & Zhang, Y. (2018). LegoOS : A Disseminated , Distributed OS for Hardware Resource Disaggregation. Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’18)., 69–87. [paper]

[Disaggregation] Angel, S., Nanavati, M., & Sen, S. (2020). Disaggregation and the application. HotCloud 2020 - 12th USENIX Workshop on Hot Topics in Cloud Computing, Co-Located with USENIX ATC 2020.[paper]

[Disaggregation] Klimovic, A., Kozyrakis, C., Thereska, E., John, B., & Kumar, S. (2016). Flash storage disaggregation. Proceedings of the 11th European Conference on Computer Systems, EuroSys 2016. [paper]

[Disaggregation] Zhang, Q., Cai, Y., Chen, X., Angel, S., Chen, A., Liu, V., & Loo, B. T. (2020). Understanding the effect of data center resource disaggregation on production DBMSs. Proceedings of the VLDB Endowment, 13(9), 1568–1581. [paper]

5, Optimizer

[Optimizer] Wu, C., Jindal, A., Amizadeh, S., Patel, H., & Le, W. (2018). Towards a learning optimizer for shared clouds. Proceedings of the VLDB Endowment, 12(3), 210–222. [paper]

[Optimizer] Leis, V., & Kuschewski, M. (2021). Towards Cost-Optimal Query Processing in the Cloud. Proc. {VLDB} Endow., 14(9), 1606–1612. [paper]

6. Safety & Recovery

[Safety] Antonopoulos, P., Arasu, A., Singh, K. D., Eguro, K., Gupta, N., Jain, R., Kaushik, R., Kodavalla, H., Kossmann, D., Ogg, N., Ramamurthy, R., Szymaszek, J., Trimmer, J., Vaswani, K., Venkatesan, R., & Zwilling, M. (2020). Azure SQL Database Always Encrypted. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1, 1511–1525. [paper]

[Safety] Arasu, A., Eguro, K., Kaushik, R., & Ramamurthy, R. (2014). Querying encrypted data. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1259–1261. [paper]

[Recovery] Yang, Y., Youill, M., Woicik, M., Liu, Y., Yu, X., Serafini, M., Aboulnaga, A., & Stonebraker, M. (2021). FlexPushdownDB: Hybrid Pushdown and Caching in a Cloud DBMS. FlexPushdownDB: Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11), 2101–2113. [paper]

7. Hardware

[System] Ortiz, J., Lee, B., Balazinska, M., Gehrke, J., & Hellerstein, J. L. (2020). SLAOrchestrator: Reducing the cost of performance SLAs for cloud data analytics. Proceedings of the 2018 USENIX Annual Technical Conference, USENIX ATC 2018, 547–560.[paper]

[Hardware] Do, J., Sengupta, S., & Swanson, S. (2019). Programmable solid-state storage in future cloud datacenters. Communications of the ACM, 62(6), 54–62. [paper]

[Hardware] Xue, S., Zhao, S., Chen, Q., Deng, G., Liu, Z., Zhang, J., Song, Z., Ma, T., Yang, Y., Zhou, Y., Niu, K., Sun, S., & Guo, M. (2020). Spool: Reliable virtualized NVMe storage pool in public cloud infrastructure. Proceedings of the 2020 USENIX Annual Technical Conference, ATC 2020, 97–110.

[Memory] Kalia, A., Andersen, D., & Kaminsky, M. (2020). Challenges and solutions for fast remote persistent memory access. SoCC 2020 - Proceedings of the 2020 ACM Symposium on Cloud Computing, 105–119. [paper]

[Memory] Wei, X., Chen, R., Chen, H., Jiao, S., Wei, X., Chen, R., & Chen, H. (2020). Fast RDMA-based Ordered Key-Value Store using Remote Learned Cache. Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation Fast RDMA-Based Ordered Key-Value Store Using Remote Learned Cache.[paper]

[Memory] Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., & Oskin, M. (2015). Latency-Tolerant Software Distributed Shared Memory. Proceedings of the 2015 USENIX Annual Technical Conference, USENIX ATC 2015, 291–305.[paper]

[Memory] Shan, Y., Tsai, S. Y., & Zhang, Y. (2017). Distributed shared persistent memory. SoCC 2017 - Proceedings of the 2017 Symposium on Cloud Computing, 323–337. [paper]

[Memory] Fent, P., Renen, A. Van, Kipf, A., Leis, V., Neumann, T., & Kemper, A. (2020). Low-latency communication for fast DBMS Using RDMA and shared memory. Proceedings - International Conference on Data Engineering, 2020-April, 1477–1488. [paper]

[Memory] Aguilera, M. K., Amit, N., Calciu, I., Deguillard, X., Gandhi, J., Subrahmanyam, P., Suresh, L., Tati, K., Venkatasubramanian, R., & Wei, M. (2017). Remote memory in the age of fast networks. SoCC 2017 - Proceedings of the 2017 Symposium on Cloud Computing, 121–127. [paper]

[Memory] Lagar-Cavilla, A., Ahn, J., Souhlal, S., Agarwal, N., Burny, R., Butt, S., Chang, J., Chaugule, A., Deng, N., Shahid, J., Thelen, G., Yurtsever, K. A., Zhao, Y., & Ranganathan, P. (2019). Software-Defined Far Memory in Warehouse-Scale Computers. International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS, 317–330. [paper]

[Network] Ziegler, T., Vani, S. T., Binnig, C., Fonseca, R., & Kraska, T. (2019). Designing distributed tree-based index structures for fast RDMA-capable networks. Proceedings of the ACM SIGMOD International Conference on Management of Data, 741–758. [paper]

[Network] Tirmazi, M., Ben Basat, R., Gao, J., & Yu, M. (2020). Cheetah: Accelerating Database Queries with Switch Pruning. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2407–2422. [paper]

[Network] Craddock, H., Konudula, L. P., Cheng, K., & Kul, G. (2019). The case for physical memory pools: A vision paper. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11513 LNCS(Vm), 208–221. [paper]

8. Application & Industry

[Application] Müller, I., Marroquín, R., & Alonso, G. (2020). Lambada: Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure. Proceedings of the ACM SIGMOD International Conference on Management of Data, 115–130. [paper]

[Application] Yu, X., Youill, M., Woicik, M., Ghanem, A., Serafini, M., Aboulnaga, A., & Stonebraker, M. (2020). PushdownDB: Accelerating a DBMS Using S3 Computation. Proceedings - International Conference on Data Engineering, 2020-April, 1802–1805. [paper]

[Application] Antonopoulos, P., Budovski, A., Diaconu, C., Saenz, A. H., Hu, J., Kodavalla, H., Kossmann, D., Lingam, S., Minhas, U. F., Prakash, N., Purohit, V., Qu, H., Ravella, C. S., Reisteter, K., Shrotri, S., Tang, D., & Wakade, V. (2019). Socrates: The new SQL server in the cloud. Proceedings of the ACM SIGMOD International Conference on Management of Data, 1743–1756. [paper]

[Industry] Verbitski, A., Gupta, A., Saha, D., Corey, J., Gupta, K., Brahmadesam, M., Mittal, R., Krishnamurthy, S., Maurice, S., Kharatishvilli, T., & Bao, X. (2018). Amazon Aurora. 789–796. [paper]

[Industry] Li, F. (2018). Cloud native database systems at Alibaba: Opportunities and challenges. Proceedings of the VLDB Endowment, 12(12), 2263–2272. [paper]

[Industry] Dobrescu, M., Argyraki, K., & Argyraki EPFL, K. (2014). Millions of Tiny Databases. Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’14). [paper]

[Industry] Cao, W., Liu, Y., Cheng, Z., Zheng, N., Li, W., Wu, W., Ouyang, L., Wang, P., Wang, Y., Kuan, R., Liu, Z., Zhu, F., & Zhang, T. (2020). POLARDB Meets Computational Storage : Efficiently Support Analytical Workloads in Cloud-Native Relational Database. 18th USENIX Conference on File and Storage Technologies (FAST 20). 2020. [paper]

[Industry] Cao, W., Zhang, Y., Yang, X., Li, F., Wang, S., Hu, Q., Cheng, X., Chen, Z., Liu, Z., Fang, J., Wang, B., Wang, Y., Sun, H., Yang, Z., Cheng, Z., Chen, S., Wu, J., Hu, W., Zhao, J., … Tong, J. (2021). PolarDB Serverless: A Cloud Native Database for Disaggregated Data Centers. Proceedings of the ACM SIGMOD International Conference on Management of Data, 2477–2489. [paper]

[Industry] Cao, W., Liu, Z., Wang, P., Chen, S., Zhu, C., Zheng, S., Wang, Y., & Ma, G. (2018). PolarFS: An ultralow latency and failure resilient distributed file system for shared storage cloud database. Proceedings of the VLDB Endowment, 11(12), 1849–1862. [paper]

[Industry] Dageville, B., Cruanes, T., Zukowski, M., Antonov, V., Avanes, A., Bock, J., Claybaugh, J., Engovatov, D., Hentschel, M., Huang, J., Lee, A. W., Motivala, A., Munir, A. Q., Pelley, S., Povinec, P., Rahn, G., Triantafyllis, S., & Unterbrunner, P. (2016). The snowflake elastic data warehouse. Proceedings of the ACM SIGMOD International Conference on Management of Data, 26-June-20, 215–226. [paper]

[Industry] Mattson, T., Rogers, J., & Elmore, A. J. (2018). The BigDAWG polystore system. Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker, 44(2), 279–289. [paper]

[Industry] Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L., Tang, L., Zhou, Y., Huang, M., Wei, W., Liu, C., Zhang, J., Li, J., Wu, X., Song, L., Sun, R., Yu, S., Zhao, L., … Tang, X. (2020). TiDB: a Raft-based HTAP database. Proceedings of the VLDB Endowment, 13(12), 3072–3084. [paper]

9. Challenges

[Challenges] Zhang, Q., Cai, Y., Angel, S., Liu, V., Chen, A., & Loo, B. T. (2020). Rethinking Data Management Systems for Disaggregated Data Centers. CIDR 2019 - 9th Biennial Conference on Innovative Data Systems Research.[paper]

[Challenges] Hellerstein, J. M., Faleiro, J., Gonzalez, J. E., Schleier-Smith, J., Sreekanti, V., Tumanov, A., & Wu, C. (2019). Serverless computing: One step forward, two steps back. CIDR 2019 - 9th Biennial Conference on Innovative Data Systems Research.[paper]

About

continuously update cloud database papers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •