Easily explore parameters and models of sklearn, XGBoost, etc. using a group of helper functions. Run a simulation using the following steps
- Load Data: i.e.
pd.read_csv(...)
- Define Regressors and Parameter Grids:
models = [Regressor("name", RegressorObject, [{'param1':value1},{'param2':value2}])
(seesrc/DefineModels.py
) - Define DataSettings: `ds = DataSetting(y=data.y, x=data[regressors], models=models.copy(), loss_function=rmse, k=5)
- Run
evaluate_all()
- Plot validation or losses: i.e. `ds.plot_model_validation_curves(path=output_path)
A set of regressors and parameters can easily be extended and experiments can be conducted in a controlled manner. The same settings can be applied to different datasets easily. Easy plots of progress with respect to different variables.
Example Validation Curve | Example Learning Curves |
---|---|
Parallelisation not implemented. Breaking out of the predefined framework requires reworking the imported classes.