Skip to content

Quickly explore parameters and models in controlled experiments. - Project Nov, 2019

Notifications You must be signed in to change notification settings

Tobiaspk/ML_Explore_Publish

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Eplore ML in Sklearn Wrappers

Usage

Easily explore parameters and models of sklearn, XGBoost, etc. using a group of helper functions. Run a simulation using the following steps

  1. Load Data: i.e. pd.read_csv(...)
  2. Define Regressors and Parameter Grids: models = [Regressor("name", RegressorObject, [{'param1':value1},{'param2':value2}]) (see src/DefineModels.py)
  3. Define DataSettings: `ds = DataSetting(y=data.y, x=data[regressors], models=models.copy(), loss_function=rmse, k=5)
  4. Run evaluate_all()
  5. Plot validation or losses: i.e. `ds.plot_model_validation_curves(path=output_path)

Advantage

A set of regressors and parameters can easily be extended and experiments can be conducted in a controlled manner. The same settings can be applied to different datasets easily. Easy plots of progress with respect to different variables.

Example Validation Curve Example Learning Curves

Disadvantage

Parallelisation not implemented. Breaking out of the predefined framework requires reworking the imported classes.

About

Quickly explore parameters and models in controlled experiments. - Project Nov, 2019

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages