Skip to content

TheFourthKaramazov/fast3r_experimenter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 

Repository files navigation

Fast3R Experimenter

A Python CLI tool to run Fast3R over single or multiple scenes with timings, PnP poses, and coloured fused point clouds, with optional view‐dropping and pointmap‐head choice.

Requirements

  • Python 3.7+
  • PyTorch
  • numpy
  • Pillow
  • Open3D
  • fast3r (and its dust3r dependencies)

Installation

pip install torch numpy Pillow open3d

Please visit the official Fast3r implementation repo for installation instructions.

Usage

Single Scene

python fast3r_experimenter.py \
  --images              /path/to/scene/images \
  --workspace           /results/scene \
  --size                512 \
  --dtype               fp32 \
  --pointmap_head       local \
  --conf_threshold      0 \
  --per_view_percentile 0

Batch

python fast3r_experimenter.py \
  --dataset_root        /data/multi_scenes \
  --workspace           /results/all \
  --size                512 \
  --dtype               bf16 \
  --pointmap_head       global \
  --conf_threshold      0 \
  --per_view_percentile 0

Arguments

Flag Required? Default Description
--images either this or --dataset_root Folder containing your scene images (single-scene mode)
--dataset_root either this or --images Parent folder of scene subdirectories (batch mode)
--workspace yes Where to write per-scene outputs
--size no 512 Resize longer image edge to this value
--dtype no fp32 Inference data type: fp32 or bf16
--pointmap_head no local Which point-map head to fuse: local (uses local_pts3d_global_est) or global (falls back to pts3d_in_other_view)
--conf_threshold no 0 Per-point confidence cutoff (points with conf <= threshold are dropped)
--per_view_percentile no 0 Drop bottom P% of views by mean confidence (views with mean conf below this percentile are skipped)

Outputs (per scene)

  • fused_fast3r.ply
    Coloured fused point cloud (if any points remain after masking).

  • poses_c2w.npy
    NumPy array of camera-to-world poses.

  • timings.csv
    CSV listing elapsed seconds for each pipeline stage (load_model, load_imgs, inference, dropped_views, align_pts, pose_pnp, fuse_pts, total).

  • Console summary
    Prints number of views processed, total 3D points, and mean distance of points.

About

CLI tool for streamlining Fast3R experiments

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages