Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Triangular Fuzzy Set Class with Membership Functions and Operations #1440

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
214 changes: 214 additions & 0 deletions fuzzy_logic/triangular_fuzzyset.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
/**
* @file
* @brief Implementation of a triangular fuzzy set.
* @details
* This file provides functions to create and manipulate triangular fuzzy sets,
* including methods to calculate membership values, union, intersection,
* complement, and a basic plot representation.
*
* By @Shreya123714
*
* Based on: https://en.wikipedia.org/wiki/Fuzzy_set
*/

#include <assert.h> // for assert
#include <math.h> //for complex math operations
#include <stdio.h> // for IO operations
#include <string.h> // for string operations

/**
* @brief Struct to represent a triangular fuzzy set.
*/
struct triangular_fuzzy_set
{
char name[50]; ///< Name of the fuzzy set
double left_boundary; ///< Left boundary of the fuzzy set
double peak; ///< Peak (central) value of the fuzzy set
double right_boundary; ///< Right boundary of the fuzzy set
};

/**
* @brief Creates a triangular fuzzy set.
* @param name The name of the fuzzy set.
* @param left_boundary The left boundary of the fuzzy set.
* @param peak The peak of the fuzzy set.
* @param right_boundary The right boundary of the fuzzy set.
* @returns A triangular fuzzy set struct.
*/
struct triangular_fuzzy_set create_triangular_fuzzy_set(const char *name,
double left_boundary,
double peak,
double right_boundary)
{
struct triangular_fuzzy_set set;
strncpy(set.name, name, sizeof(set.name) - 1);
set.name[sizeof(set.name) - 1] = '\0'; // Ensure null termination
set.left_boundary = left_boundary;
set.peak = peak;
set.right_boundary = right_boundary;
return set;
}

/**
* @brief Calculates the membership value for a given input.
* @param set The triangular fuzzy set.
* @param x The value to evaluate the membership for.
* @returns The membership value.
*/
double membership_value(struct triangular_fuzzy_set set, double x)
{
if (x <= set.left_boundary || x >= set.right_boundary)
{
return 0.0; // Out of range
}
else if (set.left_boundary < x && x <= set.peak)
{
return (x - set.left_boundary) /
(set.peak - set.left_boundary); // Increasing slope
}
else if (set.peak < x && x < set.right_boundary)
{
return (set.right_boundary - x) /
(set.right_boundary - set.peak); // Decreasing slope
}
return 0.0; // Should not reach here
}

/**
* @brief Calculates the complement (negation) of this fuzzy set.
* @param set The triangular fuzzy set.
* @returns A new triangular fuzzy set representing the complement.
*/
struct triangular_fuzzy_set complement(struct triangular_fuzzy_set set)
{
return create_triangular_fuzzy_set(set.name, 1.0 - set.right_boundary,
1.0 - set.left_boundary, 1.0 - set.peak);
}

/**
* @brief Calculates the intersection of this fuzzy set with another fuzzy set.
* @param set The triangular fuzzy set.
* @param other The other triangular fuzzy set to intersect with.
* @returns A new triangular fuzzy set representing the intersection.
*/
struct triangular_fuzzy_set intersection(struct triangular_fuzzy_set set,
struct triangular_fuzzy_set other)
{
return create_triangular_fuzzy_set(
"Intersection", fmax(set.left_boundary, other.left_boundary),
fmin(set.right_boundary, other.right_boundary),
(set.peak + other.peak) / 2);
}

/**
* @brief Calculates the union of this fuzzy set with another fuzzy set.
* @param set The triangular fuzzy set.
* @param other The other triangular fuzzy set to union with.
* @returns A new triangular fuzzy set representing the union.
*/
struct triangular_fuzzy_set union_sets(struct triangular_fuzzy_set set,
struct triangular_fuzzy_set other)
{
return create_triangular_fuzzy_set(
"Union", fmin(set.left_boundary, other.left_boundary),
fmax(set.right_boundary, other.right_boundary),
(set.peak + other.peak) / 2);
}

/**
* @brief Prints the details of the triangular fuzzy set.
* @param set The triangular fuzzy set.
*/
void print_triangular_fuzzy_set(struct triangular_fuzzy_set set)
{
printf("Triangular Fuzzy Set '%s': [%f, %f, %f]\n", set.name,
set.left_boundary, set.peak, set.right_boundary);
}

/**
* @brief Basic plotting of the membership function of the fuzzy set.
* This is a textual representation, as actual graphing is more complex in C.
*
* @param set The triangular fuzzy set to plot.
*/
void plot_triangular_fuzzy_set(struct triangular_fuzzy_set set)
{
printf("Membership function of %s:\n", set.name);
for (double x = 0; x <= 1.0; x += 0.1)
{
double membership = membership_value(set, x);
printf("x: %0.1f | Membership: %0.2f | ", x, membership);
for (int i = 0; i < (int)(membership * 50); i++)
{ // Scale for better visibility
printf("*");
}
printf("\n");
}
}

/**
* @brief Self-test implementations.
* @returns void
*/
static void tests()
{
struct triangular_fuzzy_set a =
create_triangular_fuzzy_set("A", 0.0, 0.5, 1.0);
struct triangular_fuzzy_set b =
create_triangular_fuzzy_set("B", 0.2, 0.7, 1.0);

// Test membership values
assert(membership_value(a, 0.1) == 0.2);
assert(membership_value(a, 0.5) == 1.0);
assert(membership_value(a, 0.8) == 0.4);
assert(membership_value(b, 0.6) == 0.8);

// Test union
struct triangular_fuzzy_set union_ab = union_sets(a, b);
assert(union_ab.left_boundary == 0.0);
assert(union_ab.right_boundary == 1.0);

// Test intersection
struct triangular_fuzzy_set intersection_ab = intersection(a, b);
assert(intersection_ab.left_boundary == 0.2);

// Test complement
struct triangular_fuzzy_set complement_a = complement(a);
assert(complement_a.left_boundary == 0.0);

printf("All tests have successfully passed!\n");
}

/**
* @brief Main function.
* @returns 0 on exit.
*/
int main()
{
tests(); // Run self-test implementations

struct triangular_fuzzy_set a =
create_triangular_fuzzy_set("A", 0.0, 0.5, 1.0);
struct triangular_fuzzy_set b =
create_triangular_fuzzy_set("B", 0.2, 0.7, 1.0);

print_triangular_fuzzy_set(a);
print_triangular_fuzzy_set(b);

plot_triangular_fuzzy_set(a);
plot_triangular_fuzzy_set(b);

struct triangular_fuzzy_set union_ab = union_sets(a, b);
struct triangular_fuzzy_set intersection_ab = intersection(a, b);
struct triangular_fuzzy_set complement_a = complement(a);

print_triangular_fuzzy_set(union_ab);
print_triangular_fuzzy_set(intersection_ab);
print_triangular_fuzzy_set(complement_a);

plot_triangular_fuzzy_set(union_ab);
plot_triangular_fuzzy_set(intersection_ab);
plot_triangular_fuzzy_set(complement_a);

return 0;
}
Loading