Skip to content

Tang1705/Video-Super-Resolution-Rankings

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 

Repository files navigation

Video Super-Resolution Rankings

More methods: http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c240235?viewType=HTML

Video Super-Resolution

Method Frames REDS/Vimeo Params(M) REDS4 PSNR REDS4 SSIM Vimeo-90K-T PSNR Vimeo-90K-T SSIM Vid4 PSNR Vid4 SSIM
VSRM 1 16/7 17.1 33.11 0.9162 38.33 0.9543 28.44 0.8552
LRTI-VSR 2 16/- 12.9 33.06 0.9162 - - - -
IART 3 16/7 13.4 32.90 0.9138 38.14 0.9528 28.26 0.8517
MIA-VSR 4 16/14 16.5 32.78 0.9220 38.22 0.9532 28.20 0.8507
MFPI 5 -/- 7.3 32.81 0.9106 38.28 0.9534 28.11 0.8481
MambaVSR 6 16/14 14.1 32.75 0.9110 38.33 0.9539 28.20 0.8514
PSRT-recurrent 7 16/14 13.4 32.72 0.9106 38.27 0.9536 28.07 0.8485
DFVSR8 - 7.1 32.76 0.9081 38.25 0.9556 27.92 0.8427
RVRT 9 30/14 10.8 32.75 0.9113 38.15 0.9527 27.99 0.8426
FTVSR++10 - 10.8 32.42 0.907 - - 28.80 0.868
CTVSR 11 16/14 34.5 32.28 0.9047 - - 28.03 0.8487
VRT 12 16/7 35.6 32.19 0.9006 38.20 0.9530 27.93 0.8425
TTVSR 13 50/- 6.8 32.12 0.9021 37.92 0.9526 28.40 0.8643
TCNet14 - 9.6 31.82 0.9002 37.94 0.9514 27.48 0.8380
RTA 15 5/7 17.0 31.30 0.8850 37.84 0.9498 27.90 0.8380
BasicVSR++ 16 30/14 7.3 32.39 0.9069 37.79 0.9500 27.79 0.8400
ETDM 17 - 8.4 32.15 0.9024 - - 28.81 0.8725
FTVSR18 - 10.8 31.82 0.896 - - 28.31 0.860
MSHPFNL19 - 7.77 - - 36.75 0.9406 27.70 0.8472
ICNet20 - 18.34 31.71 0.8963 37.72 0.9477 27.43 0.8287
IconVSR 21 15/14 8.7 31.67 0.8948 37.47 0.9476 27.39 0.8279
BasicVSR 21 15/14 6.3 31.42 0.8909 37.18 0.9450 27.24 0.8251
VSR-T 22 5/7 32.6 31.19 0.8815 37.71 0.9494 27.36 0.8258
TGA23 - 5.8 - - 37.43 0.9480 27.19 0.8213
RLSP24 - 4.2 - - 37.39 0.9470 27.15 0.8202
EDVR25 5/7 20.6 31.09 0.8800 37.61 0.9489 27.35 0.8264
MSFFN26 - - - - 37.33 0.9467 27.23 0.8218
MuCAN27 5/7 - 30.88 0.8750 37.32 0.9465 - -
RBPN28 7/7 12.2 30.09 0.8590 37.07 0.9435 27.12 0.8180
PFNL29 7/7 3.0 29.63 0.8502 36.14 0.9363 26.73 0.8029
DUF30 7/7 5.8 28.63 0.8251 - - 27.33 0.8319
FRVSR31 - 5.1 - - - - 26.69 0.8220
D3Dnet32 - 2.58 - - 35.65 0.933 26.52 0.799
TOFlow33 5/7 - 27.98 0.7990 33.08 0.9054 25.89 0.7651
3DSRnet 34 - - - - - - 25.71 0.7588
SPMC35 - - - - - - 25.52 0.76
VESPCN36 - - - - - - 25.35 0.7577
VSRNet37 - 0.27 - - - - 22.81 0.65
Bicubic - - 26.14 0.7292 31.32 0.8684 23.78 0.6347

Space-Time Video Super-Resolution

https://github.com/AIVFI/Video-Frame-Interpolation-Rankings

Awesome-Super-Resolution

https://github.com/ChaofWang/Awesome-Super-Resolution

Footnotes

  1. VSRM: A Robust Mamba-Based Framework for Video Super-Resolution. [ICCV 2025]

  2. Small Clips, Big Gains: Learning Long-Range Refocused Temporal Information for Video Super-Resolution. [arXiv 2025]

  3. An Implicit Alignment for Video Super-Resolution. [CVPR 2024]

  4. Video Super-Resolution Transformer with Masked Inter&Intra-Frame Attention. [CVPR 2025]

  5. Multi-Frequency Representation Enhancement with Privilege Information for Video Super-Resolution. [ICCV 2023]

  6. MambaVSR: Content-Aware Scanning State Space Model for Video Super-Resolution. [arXiv 2025]

  7. Rethinking Alignment in Video Super-Resolution Transformers. [NeurIPS 2022]

  8. DFVSR: Directional Frequency Video Super-Resolution via Asymmetric and Enhancement Alignment Network. [IJCAI 2023]

  9. Recurrent Video Restoration Transformer with Guided Deformable Attention. [NeurIPS 2022]

  10. Learning Degradation-Robust Spatiotemporal Frequency-Transformer for Video Super-Resolution. [TPAMI 2023]

  11. CTVSR: Collaborative Spatial-Temporal Transformer for Video Super-Resolution. [TCSVT 2023]

  12. VRT: A Video Restoration Transformer. [TIP 2024]

  13. Learning Trajectory-Aware Transformer for Video Super-Resolution. [CVPR 2022]

  14. Temporal Consistency Learning of Inter-Frames for Video Super-Resolution. [TCSVT 2023]

  15. Revisiting Temporal Alignment for Video Restoration . [CVPR 2022]

  16. BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment. [CVPR 2022]

  17. Look Back and Forth: Video Super-Resolution with Explicit Temporal Difference Modeling. [CVPR 2022]

  18. FTVSR: Learning Spatiotemporal Frequency-Transformer for Compressed Video Super-Resolution. [ECCV 2022]

  19. A Progressive Fusion Generative Adversarial Network for Realistic and Consistent Video Super-Resolution. [TPAMI 2020]

  20. ICNet: Joint Alignment and Reconstruction via Iterative Collaboration for Video Super-Resolution. [ACM MM 2022]

  21. BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond. [CVPR 2021] 2

  22. Video Super-Resolution Transformer. [arxiv 2021]

  23. Video Super-resolution with Temporal Group Attention. [CVPR 2020]

  24. Efficient Video Super-Resolution through Recurrent Latent Space Propagation. [ICCVW 2019]

  25. EDVR: Video Restoration with Enhanced Deformable Convolutional Networks. [CVPRW 2019]

  26. Multi-Stage Feature Fusion Network for Video Super-Resolution. [TIP 2021]

  27. MuCAN: Multi-Correspondence Aggregation Network for Video Super-Resolution. [ECCV 2020]

  28. Recurrent Back-Projection Network for Video Super-Resolution. [CVPR 2019]

  29. Progressive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-Temporal Correlations. [ICCV 2019]

  30. Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation. [CVPR 2018]

  31. Frame-Recurrent Video Super-Resolution. [CVPR 2018]

  32. Deformable 3D Convolution for Video Super-Resolution. [SPL 2020]

  33. Video Enhancement with Task-Oriented Flow. [IJCV 2019]

  34. 3DSRnet: Video Super-resolution using 3D Convolutional Neural Networks. [ICIP 2019]

  35. Detail-revealing Deep Video Super-resolution. [ICCV 2017]

  36. Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation. [CVPR 2017]

  37. Video Super-Resolution With Convolutional Neural Networks. [TCI 2016]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published