This python library computes from the reflection coefficient the corresponding scattering potential, assuming no absorption and no bound states. The algorithm is a straight-forward discretization of the Gelfand-Levitan-Marchenko integral equation.
where the function g is the fourier transform of the reflection coefficient.
First load the reflection data. Either the real part or the imaginary part of the reflection coefficient is required. Of course, also both can be used.
q, RReal, RImag = numpy.loadtxt("reflection.dat").T
From the data, calculate the Fourier transform, and reconstruct the data using the PotentialReconstruction class. The parameter precision determines the discretization step, the higher the smaller the step. The shift parameter shifts the potential to the right, useful for potentials with rough surfaces at the air interface.
from dinv.fourier import FourierTransform
from dinv.glm import PotentialReconstruction
fourier = FourierTransform(q/2, RReal, RImag)
precision = 1
film_thickness = 350
reconstruction = PotentialReconstruction(film_thickness, precision, shift=20)
potential = reconstruction.reconstruct(fourier)
The reconstructed potential is a callable function (scipy interpolation object). For a simple plot, simply use
import pylab
import numpy
x_space = numpy.linspace(0, 360, 1)
pylab.plot(x_space, potential(x_space))
pylab.show()
It is possible to use only the real or only the imaginary part for the Fourier transform. The fourier transform degenerates to the cosine transform if only the real part is used. Analogously, the sine transform uses only the imaginary part. This can be achieved simply by
# Use only real part
fourier.method = fourier.cosine_transform
# Use only imaginary part
fourier.method = fourier.sine_transform
# Use both
fourier.method = fourier.fourier_transform
If the reflection coefficient cannot be measured for low q values, it may be possible to calculate them using a fixed-point iteration.
from dinv.glm import ReflectivityAmplitudeInterpolation, ReflectionCalculation
# The range to interpolate
k_range = numpy.linspace(0, 0.01, 10)
reflection = ReflectionCalculation(None, 0, 370)
constraint = ReflectivityAmplitudeInterpolation._example_constrain
interpolation = ReflectivityAmplitudeInterpolation(fourier, k_range, reconstruction, reflection, constraint)
reflection = interpolation.interpolate(max_iterations=200)
The variable reflection contains the reflection coeffcient only for k in k_range.