Skip to content

Syenah/semantio

Repository files navigation

Semantio: The Mother of Your AI Agents

Semantio is an advanced SDK designed to simplify the creation of AI agents. Whether you’re building a research agent, a customer support bot, or a personal AI, Semantio provides all the tools and integrations to make it easy.

We currently support Groq, OpenAI, and Anthropic LLMs, along with a Retrieval-Augmented Generation (RAG) system for enhanced context-awareness.

Installation

Install Semantio via pip:

pip install semantio

Features

  • Seamless LLM Integration: Plug-and-play support for Groq, OpenAI, and Anthropic.
  • RAG Support: Retrieval-Augmented Generation for contextually aware responses.
  • Customizable Agents: Define the personality, behavior, and instructions for your AI agents.
  • Extensibility: Add new tools or modify behavior with ease.

Example: Blockchain Research Agent

This example demonstrates how to create a blockchain research agent using Semantio and the Groq LLM.

Prerequisites

  1. Set up your Groq API key as an environment variable or directly in the code.
import os
os.environ["GROQ_API_KEY"] = "your-api-key"  # Replace with your Groq API key
  1. Import the Semantio Agent class and configure your agent.

Code Example

# Set the Groq API key (either via environment variable or explicitly)
import os
os.environ["GROQ_API_KEY"] = "your-api-key"  # Set the API key here

# Initialize the Agent
from semantio.agent import Agent

healthcare_research_assistant = Agent(
    name="Healthcare Agent",
    description="Extract and structure medical information from the provided text into a JSON format used in healthcare",
    instructions=[
        "Always use medical terminology while creating json",
        "Extract and structure medical information from the provided text into a JSON format used in healthcare",
    ],
    model="Groq",
    show_tool_calls=True,
    user_name="Researcher",
    emoji=":chains:",
    markdown=True,
)
patient_text = """
Patient Complaints of High grade fever, chest pain, radiating towards right shoulder. Sweating,
patient seams to have high grade fever ,  patient is allergic to pollution , diagnosis high grade fever , plan of care comeback after 2 days , instructions take rest and drink lot of water  Palpitation since 5 days.
Advice investigation: CBC, LFT, Chest X ray, Abdomen Ultrasound
Medication: Diclofenac 325mg twice a day for 5 days, Amoxiclave 625mg once a day for 5 days, Azithromycin 500mg Once a day
Ibuprofen SOS, Paracetamol sos, Pentoprazol before breakfast  , follow up after 2 days
"""
# Test the Agent
healthcare_research_assistant.print_response(patient_text)

File Structure

The Semantio SDK is organized as follows:

Semantio/
├── semantio/                      # Core package
│   ├── __init__.py              # Package initialization
│   ├── agent.py                 # Core Agent class
│   ├── rag.py                   # RAG functionality
│   ├── memory.py                # Conversation memory management
│   ├── llm/                     # LLM integrations
│   │   ├── __init__.py
│   │   ├── openai.py            # OpenAI integration
│   │   ├── anthropic.py         # Anthropic (Claude) integration
│   │   ├── deepseek.py          # Deepseek integration
│   │   ├── gemini.py            # Gemini integration
│   │   ├── mistral.py           # Mistral integration
│   │   └── base_llm.py          # Base class for LLMs
│   ├── knowledge_base/          # Knowledge base integration
│   │   ├── __init__.py
│   │   ├── vector_store.py      # Vector store for embeddings
│   │   ├── document_loader.py   # Load documents into the knowledge base
│   │   └── retriever.py         # Retrieve relevant documents
│   ├── tools/                   # Tools for assistants
│   │   ├── __init__.py
│   │   ├── calculator.py        # Example tool: Calculator
│   │   ├── web_search.py        # Example tool: Web search
│   │   └── base_tool.py         # Base class for tools
│   ├── storage/                 # Storage for memory and data
│   │   ├── __init__.py
│   │   ├── local_storage.py     # Local file storage
│   │   └── cloud_storage.py     # Cloud storage (e.g., S3, GCP)
│   ├── utils/                   # Utility functions
│   │   ├── __init__.py
│   │   ├── logger.py            # Logging utility
│   │   └── config.py            # Configuration loader
│   └── cli/                     # Command-line interface
│       ├── __init__.py
│       └── main.py              # CLI entry point
├── tests/                       # Unit tests
│   ├── __init__.py
│   ├── test_assistant.py
│   ├── test_rag.py
│   └── test_memory.py
├── examples/                    # Example usage
│   ├── basic_assistant.py
│   ├── customer_support.py
│   └── research_assistant.py
├── requirements.txt             # Dependencies
├── setup.py                     # Installation script
├── README.md                    # Documentation
└── LICENSE                      # License file

Contributing

Contributions are welcome! Please fork the repository, create a feature branch, and submit a pull request with a detailed description of your changes.

License

This project is licensed under the MIT License.

Support

For issues, feature requests, or questions, please open an issue in the repository or reach out to the team.

About

A Framework to convert any llm into a AI Agent team

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages