Skip to content

Sustainscapes/Klimaskovfond

Repository files navigation

Klimaskovfond

The goal of Klimaskovfond is to generate the needed data sets to get analize the Klimaskovfond score system

Overview of Forest Patches

We have a total of 533,500 forest patches, with sizes ranging from 0.01 to 1,228.918 hectares. The distribution of forest patch areas is visualized below:

Next, let’s focus on forest patches larger than 2 hectares.

Out of the total forest patches, only 30,697 correspond to patches larger than 2 hectares. The distribution of these larger patches is visualized below:

Species Area Relationship Analysis

To determine the optimal forest patch size for biodiversity preservation, we conducted a Species Area Relationship analysis using the sars R package. The analysis utilized GBIF data on species presences within forest polygons from 1999 to 2023, resolving synonyms.

The distribution of species across kingdoms is summarized below:

Kingdom Percentage
Plantae 52.53
Animalia 28.11
Fungi 19.09
Protozoa 0.25
Chromista 0.02
Bacteria 0.01

Additionally, we present the top 10 classes with the highest proportions:

kingdom phylum class Percentage Cumulative_Percentage
Plantae Tracheophyta Magnoliopsida 33.60 33.60
Animalia Chordata Aves 17.12 50.72
Fungi Basidiomycota Agaricomycetes 15.41 66.13
Plantae Tracheophyta Liliopsida 13.98 80.11
Animalia Arthropoda Insecta 8.27 88.38
Plantae Tracheophyta Polypodiopsida 1.82 90.20
Plantae Bryophyta Bryopsida 1.60 91.80
Animalia Chordata Mammalia 1.05 92.85
Fungi Ascomycota Sordariomycetes 1.01 93.86
Plantae Tracheophyta Pinopsida 0.92 94.78

Species Area Relationship for Different Groups

Now, we perform a species area relationship analysis for three groups: plants and animals together, plants only, and animals only.

Plants and Animals

Here we can see the table of selected models:

Model Weight AIC R2 R2a Shape Asymptote CumWeight
ratio 1 239029.7 0.430 0.430 convex up TRUE 1
asymp 0 239054.0 0.430 0.429 convex up TRUE 1
p1 0 239066.5 0.429 0.429 convex up FALSE 1
weibull4 0 239078.7 0.429 0.429 convex up FALSE 1
p2 0 239079.2 0.429 0.429 sigmoid FALSE 1
weibull3 0 239079.4 0.429 0.429 convex up FALSE 1
heleg 0 239081.3 0.429 0.429 convex up FALSE 1
betap 0 239083.8 0.429 0.429 convex up FALSE 1
powerR 0 239087.6 0.429 0.429 convex up FALSE 1
power 0 239093.5 0.428 0.428 convex up FALSE 1
epm1 0 239095.3 0.428 0.428 convex up FALSE 1
epm2 0 239095.4 0.428 0.428 convex up FALSE 1
koba 0 239589.8 0.415 0.415 convex up FALSE 1
monod 0 239791.6 0.409 0.409 convex up TRUE 1
gompertz 0 239845.9 0.407 0.407 sigmoid TRUE 1
negexpo 0 240025.4 0.402 0.402 convex up TRUE 1
linear 0 240385.6 0.392 0.392 linear FALSE 1
logistic 0 240447.2 0.390 0.390 sigmoid TRUE 1
loga 0 243228.7 0.302 0.302 convex up FALSE 1
chapman 0 250693.8 0.000 0.000 linear TRUE 1

and the plot of the relationship

Plants only

Now we fit the same model but for plants only

Here we can see the table of selected models:

Model Weight AIC R2 R2a Shape Asymptote CumWeight
p2 0.958 173087.1 0.339 0.339 sigmoid FALSE 0.958
powerR 0.042 173093.3 0.339 0.339 convex up FALSE 1.000
ratio 0.000 173112.6 0.338 0.338 convex up TRUE 1.000
epm1 0.000 173124.7 0.338 0.338 convex up FALSE 1.000
epm2 0.000 173132.3 0.338 0.337 convex up FALSE 1.000
power 0.000 173224.9 0.334 0.334 convex up FALSE 1.000
p1 0.000 173226.9 0.334 0.334 convex up FALSE 1.000
heleg 0.000 173226.9 0.334 0.334 convex up FALSE 1.000
weibull3 0.000 173226.9 0.334 0.334 convex up FALSE 1.000
weibull4 0.000 173228.9 0.334 0.334 convex up FALSE 1.000
betap 0.000 173295.5 0.331 0.331 convex up FALSE 1.000
asymp 0.000 173356.6 0.328 0.328 convex up FALSE 1.000
gompertz 0.000 173431.7 0.325 0.325 sigmoid TRUE 1.000
logistic 0.000 173674.7 0.315 0.315 sigmoid TRUE 1.000
linear 0.000 173969.8 0.302 0.302 linear FALSE 1.000
koba 0.000 174106.3 0.296 0.296 convex up FALSE 1.000
loga 0.000 174980.7 0.257 0.257 convex up FALSE 1.000
monod 0.000 174693.1 0.270 0.270 convex up TRUE 1.000
negexpo 0.000 175213.5 0.247 0.247 convex up TRUE 1.000
chapman 0.000 179804.3 0.000 0.000 sigmoid TRUE 1.000

and the plot of the model

Animals only

Now we fit the same model but for Animals only

Here we can see the table of selected models:

Model Weight AIC R2 R2a Shape Asymptote CumWeight
weibull4 1 176603.6 0.299 0.299 convex up TRUE 1
ratio 0 176646.0 0.297 0.297 convex up TRUE 1
p1 0 176651.3 0.297 0.296 convex up FALSE 1
weibull3 0 176659.7 0.296 0.296 convex up TRUE 1
betap 0 176662.7 0.296 0.296 convex up TRUE 1
heleg 0 176662.8 0.296 0.296 convex up FALSE 1
epm1 0 176678.6 0.295 0.295 convex up FALSE 1
epm2 0 176682.0 0.295 0.295 sigmoid FALSE 1
power 0 176682.4 0.295 0.295 convex up FALSE 1
p2 0 176684.3 0.295 0.295 convex up FALSE 1
powerR 0 176684.4 0.295 0.295 convex up FALSE 1
koba 0 176756.5 0.292 0.292 convex up FALSE 1
monod 0 176782.0 0.291 0.291 convex up TRUE 1
negexpo 0 176810.6 0.290 0.289 convex up TRUE 1
asymp 0 176840.1 0.288 0.288 convex up FALSE 1
gompertz 0 177038.7 0.280 0.280 sigmoid TRUE 1
linear 0 177081.5 0.278 0.278 linear FALSE 1
logistic 0 177368.9 0.265 0.265 sigmoid TRUE 1
loga 0 178774.3 0.199 0.199 convex up FALSE 1
chapman 0 182390.6 0.000 0.000 sigmoid TRUE 1

and the plot of the model

Buffer and intersection generation

Tasks needed

  • Existing nature (A), add a 5 ha buffer, add jakob’s Forest dataset
  • A = Existing nature
  • B = Jakobs Forest or Fredskov
  • Buffer ~5 Ha (225m) around B butcannot be part of A, and has to be a part of agriculture
  • For every buffer patch we calculate the contiguity with B and A patches and calculate total area and proportion of forest within A and B and add Lavbund proportion

Read A and plot

Existing Nature (A) and Forest (B) Datasets

We begin by loading the existing nature dataset (A) and the dataset representing deciduous forest areas from Jakob Assmann’s work, which we’ll refer to as B.

Agricultural Land Dataset

Next, we acquire the dataset that represents agricultural land in Denmark. This information is crucial, as we want to ensure that the newly created forested areas are restricted to the existing agricultural land.

Generating a Buffer around Deciduous Forest

We generate a 225-meter buffer around the deciduous forest areas, approximating a 5-hectare squared region.

This script creates a buffer around deciduous forest areas, ensuring it conforms to the specified conditions and constraints. The resulting buffer is then saved as a Cloud-Optimized GeoTIFF (COG) file named “Buffer_all_225.tif.”

We can now visualize all this categories

Now in order to calculate areas and adjacencies the raster will be transformed into polygons

Now to actually calculate the values we will first unite resolve for A and B join them in the largest possible polygons

Now we filter form the joint polygons only the ones with areas higher than 200 ha, 100 Ha, 50 Ha and 25 Ha

Now we go one by one and we generate the potential forest content

200 ha

And now we transform this into polygons

We now we process the potential forest to add total area considering AB (Total_Area), the area of the potential forest is included (Ha), we caclulate the area of forest considering the adjacent A and B areas, Forest_Area

#> Error in PotentialForest$Total_Ha[i] <- PotentialForest$Ha[i] + AB_200[Temp$to_id,  : 
#>   replacement has length zero

100 ha

And now we transform this into polygons

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages