- Scripts for tracking / consistent feature generation
- Release training code (in December 2024)
Table R1. Comprehensive comparison with existing methods on Tap-Vid benchmark (DAVIS).
Metric | PSNR ↑ | SSIM ↑ | LPIPS ↓ | AJ ↑ | OA ↑ | TC ↓ | Training Time | GPU Memory | FPS | |
---|---|---|---|---|---|---|---|---|---|---|
4DGS | 18.12 | 0.5735 | 0.5130 | 5.1 | 10.2 | 75.45 | 8.11 | ~40 mins | 10G | 145.8 |
RoDyF | 24.79 | 0.723 | 0.394 | \ | \ | \ | \ | > 24 hours | 24G | > 1min |
Deformable Sprites | 22.83 | 0.6983 | 0.3014 | 20.6 | 32.9 | 69.7 | 2.07 | ~30 mins | 24G | 1.6 |
Omnimotion | 24.11 | 0.7145 | 0.3713 | 51.7 | 67.5 | 85.3 | 0.74 | > 24 hours | 24G | > 1min |
CoDeF | 26.17 | 0.8160 | 0.2905 | 7.6 | 13.7 | 78.0 | 7.56 | ~30 mins | 10G | 8.8 |
Ours | 28.63 | 0.8373 | 0.2283 | 41.9 | 57.7 | 79.2 | 1.82 | ~30 mins | 10G | 149 |
If you find our work useful, please consider citing:
@article{sun2024splatter,
title={Splatter a Video: Video Gaussian Representation for Versatile Processing},
author={Sun, Yang-Tian and Huang, Yi-Hua and Ma, Lin and Lyu, Xiaoyang and Cao, Yan-Pei and Qi, Xiaojuan},
journal={arXiv preprint arXiv:2406.13870},
year={2024}
}