A statistical model/toolbox to identify nuclei-resolved ligand-receptor interactions (LRIs) with spatial co-expression (i.e., spatial association). Uniquely, FineST can distinguish co-expressed ligand-receptor pairs (LR pairs) from spatially separating pairs at sub-spot level or single-cell level.
It comprises three components (Training-Imputation-Discovery) after HE image feature is extracted:
- Step0: HE image feature extraction
- Step1: Training FineST on the within spots
- Step2: Super-resolution spatial RNA-seq imputation
- Step3: Fine-grained LR pair and CCC pattern discovery
FineST is available through PyPI.
To install, type the following command line and add -U
for updates:
pip install -U FineST
Alternatively, install from this GitHub repository for latest (often development) version (time: < 1 min):
pip install -U git+https://github.com/StatBiomed/FineST
$ git clone https://github.com/StatBiomed/FineST.git
$ conda create --name FineST python=3.8
$ conda activate FineST
$ cd FineST
$ pip install -r requirements.txt
Typically installation is completed within a few minutes. Then install pytorch, refer to pytorch installation.
$ conda install pytorch=1.7.1 torchvision torchaudio cudatoolkit=11.0 -c pytorch
Verify the installation using the following command:
python
>>> import torch
>>> print(torch.__version__)
>>> print(torch.cuda.is_available())
Usage illustrations:
The source codes for reproducing the FineST analysis in this work are provided (see demo directory). All relevant materials involved in the reproducing codes are available from Google Drive.
- For Visium, using a single slice of 10x Visium human nasopharyngeal carcinoma (NPC) data.
- For Visium HD, using a single slice of 10x Visium HD human colorectal cancer (CRC) data with 16-um bin.
Visium measures about 5k spots across the entire tissue area. The diameter of each individual spot is roughly 55 micrometers (um), while the center-to-center distance between two adjacent spots is about 100 um. In order to capture the gene expression profile across the whole tissue ASAP,
Firstly, interpolate between spots
in horizontal and vertical directions,
using Spot_interpolate.py
.
python ./FineST/demo/Spot_interpolate.py \
--data_path ./Dataset/NPC/ \
--position_list tissue_positions_list.csv \
--dataset patient1
with Input: tissue_positions_list.csv
- Locations of within spots
(n),
and Output: _position_add_tissue.csv
- Locations of between spots
(m ~= 3n).
Then extracte the within spots
HE image feature embeddings using HIPT_image_feature_extract.py
.
python ./FineST/demo/HIPT_image_feature_extract.py \
--dataset AH_Patient1 \
--position ./Dataset/NPC/patient1/tissue_positions_list.csv \
--image ./Dataset/NPC/patient1/20210809-C-AH4199551.tif \
--output_path_img ./Dataset/NPC/HIPT/AH_Patient1_pth_64_16_image \
--output_path_pth ./Dataset/NPC/HIPT/AH_Patient1_pth_64_16 \
--patch_size 64 \
--logging_folder ./Logging/HIPT_AH_Patient1/
Similarlly, extracte the between spots
HE image feature embeddings using HIPT_image_feature_extract.py
.
python ./FineST/demo/HIPT_image_feature_extract.py \
--dataset AH_Patient1 \
--position ./Dataset/NPC/patient1/patient1_position_add_tissue.csv \
--image ./Dataset/NPC/patient1/20210809-C-AH4199551.tif \
--output_path_img ./Dataset/NPC/HIPT/NEW_AH_Patient1_pth_64_16_image \
--output_path_pth ./Dataset/NPC/HIPT/NEW_AH_Patient1_pth_64_16 \
--patch_size 64 \
--logging_folder ./Logging/HIPT_AH_Patient1/
The image segment execution time: 8.153s, the image feature extract time: 35.499s.
Input files:
20210809-C-AH4199551.tif
: Raw histology imagepatient1_position_add_tissue.csv
: "Between spot" (Interpolated spots) locations
Output files:
NEW_AH_Patient1_pth_64_16_image
: Segmeted "Between spot" histology image patches (.png)NEW_AH_Patient1_pth_64_16
: Extracted "Between spot" image feature embeddiings for each patche (.pth)
Visium HD captures continuous squares without gaps, it measures the whole tissue area.
python ./FineST/demo/HIPT_image_feature_extract.py \
--dataset HD_CRC_16um \
--position ./Dataset/CRC/square_016um/tissue_positions.parquet \
--image ./Dataset/CRC/square_016um/Visium_HD_Human_Colon_Cancer_tissue_image.btf \
--output_path_img ./Dataset/CRC/HIPT/HD_CRC_16um_pth_32_16_image \
--output_path_pth ./Dataset/CRC/HIPT/HD_CRC_16um_pth_32_16 \
--patch_size 32 \
--logging_folder ./Logging/HIPT_HD_CRC_16um/
The image segment execution time: 62.491s, the image feature extract time: 1717.818s.
Input files:
Visium_HD_Human_Colon_Cancer_tissue_image.btf
: Raw histology image (.btf Visium HD or .tif Visium)tissue_positions.parquet
: Spot/bin locations (.parquet Visium HD or .csv Visium)
Output files:
HD_CRC_16um_pth_32_16_image
: Segmeted histology image patches (.png)HD_CRC_16um_pth_32_16
: Extracted image feature embeddiings for each patche (.pth)
On Visium dataset, if trained weights (i.e. weight_save_path) have been obtained, just run the following command. Otherwise, if you want to re-train a model, just omit weight_save_path line.
python ./FineST/FineST/demo/FineST_train_infer.py \
--system_path '/mnt/lingyu/nfs_share2/Python/' \
--weight_path 'FineST/FineST_local/Finetune/' \
--parame_path 'FineST/FineST/parameter/parameters_NPC_P10125.json' \
--dataset_class 'Visium' \
--gene_selected 'CD70' \
--LRgene_path 'FineST/FineST/Dataset/LRgene/LRgene_CellChatDB_baseline.csv' \
--visium_path 'FineST/FineST/Dataset/NPC/patient1/tissue_positions_list.csv' \
--image_embed_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/AH_Patient1_pth_64_16/' \
--spatial_pos_path 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/position_order.csv' \
--reduced_mtx_path 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/harmony_matrix.npy' \
--weight_save_path 'FineST/FineST_local/Finetune/20240125140443830148' \
--figure_save_path 'FineST/FineST_local/Dataset/NPC/Figures/'
FineST_train_infer.py
is used to train and evaluate the FineST model using Pearson Correlation, it outputs:
- Average correlation of all spots: 0.8534651812923978
- Average correlation of all genes: 0.8845136777311445
Input files:
parameters_NPC_P10125.json
: The model parameters.LRgene_CellChatDB_baseline.csv
: The genes involved in Ligand or Receptor from CellChatDB.tissue_positions_list.csv
: It can be found in the spatial folder of 10x Visium outputs.AH_Patient1_pth_64_16
: Image feature folder from HIPTHIPT_image_feature_extract.py
.position_order.csv
: Ordered tissue positions list, according to image patches' coordinates.harmony_matrix.npy
: Ordered gene expression matrix, according to image patches' coordinates.20240125140443830148
: The trained weights. Just omit it if you want to newly train a model.
Output files:
Finetune
: The logging resultsmodel.log
and trained weightsepoch_50.pt
(.log and .pt)Figures
: The visualization plots, used to see whether the model trained well or not (.pdf)
This step supposes that the trained weights (i.e. weight_save_path) have been obtained, just run the following.
python ./FineST/FineST/demo/High_resolution_imputation.py \
--system_path '/mnt/lingyu/nfs_share2/Python/' \
--weight_path 'FineST/FineST_local/Finetune/' \
--parame_path 'FineST/FineST/parameter/parameters_NPC_P10125.json' \
--dataset_class 'Visium' \
--gene_selected 'CD70' \
--LRgene_path 'FineST/FineST/Dataset/LRgene/LRgene_CellChatDB_baseline.csv' \
--visium_path 'FineST/FineST/Dataset/NPC/patient1/tissue_positions_list.csv' \
--imag_within_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/AH_Patient1_pth_64_16/' \
--imag_betwen_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/NEW_AH_Patient1_pth_64_16/' \
--spatial_pos_path 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/position_order_all.csv' \
--weight_save_path 'FineST/FineST_local/Finetune/20240125140443830148' \
--figure_save_path 'FineST/FineST_local/Dataset/NPC/Figures/' \
--adata_all_supr_path 'FineST/FineST_local/Dataset/ImputData/patient1/patient1_adata_all.h5ad' \
--adata_all_spot_path 'FineST/FineST_local/Dataset/ImputData/patient1/patient1_adata_all_spot.h5ad'
High_resolution_imputation.py
is used to predict super-resolved gene expression
based on the image segmentation (Geometric sub-spot level
or Nuclei single-cell level
).
Input files:
parameters_NPC_P10125.json
: The model parameters.LRgene_CellChatDB_baseline.csv
: The genes involved in Ligand or Receptor from CellChatDB.tissue_positions_list.csv
: It can be found in the spatial folder of 10x Visium outputs.AH_Patient1_pth_64_16
: Image feature of within-spots fromHIPT_image_feature_extract.py
.NEW_AH_Patient1_pth_64_16
: Image feature of between-spots fromHIPT_image_feature_extract.py
.position_order_all.csv
: Ordered tissue positions list, of both within spots and between spots.20240125140443830148
: The trained weights. Just omit it if you want to newly train a model.
Output files:
Finetune
: The logging resultsmodel.log
and trained weightsepoch_50.pt
(.log and .pt)Figures
: The visualization plots, used to see whether the model trained well or not (.pdf)patient1_adata_all.h5ad
: High-resolution gene expression, at sub-spot level (16x3x resolution).patient1_adata_all_spot.h5ad
: High-resolution gene expression, at spot level (3x resolution).
Using sc Patient1 pth 16 16
i.e., the image feature of single-nuclei from HIPT_image_feature_extract.py
, just run the following.
python ./FineST/FineST/demo/High_resolution_imputation.py \
--system_path '/mnt/lingyu/nfs_share2/Python/' \
--weight_path 'FineST/FineST_local/Finetune/' \
--parame_path 'FineST/FineST/parameter/parameters_NPC_P10125.json' \
--dataset_class 'VisiumSC' \
--gene_selected 'CD70' \
--LRgene_path 'FineST/FineST/Dataset/LRgene/LRgene_CellChatDB_baseline.csv' \
--visium_path 'FineST/FineST/Dataset/NPC/patient1/tissue_positions_list.csv' \
--imag_within_path 'NPC/Data/stdata/ZhuoLiang/LLYtest/AH_Patient1_pth_64_16/' \
--image_embed_path_sc 'NPC/Data/stdata/ZhuoLiang/LLYtest/sc_Patient1_pth_16_16/' \
--spatial_pos_path_sc 'FineST/FineST_local/Dataset/NPC/ContrastP1geneLR/position_order_sc.csv' \
--adata_super_path_sc 'FineST/FineST_local/Dataset/ImputData/patient1/patient1_adata_all_sc.h5ad' \
--weight_save_path 'FineST/FineST_local/Finetune/20240125140443830148' \
--figure_save_path 'FineST/FineST_local/Dataset/NPC/Figures/'
This step is based on SpatialDM and SparseAEH (developed by our Lab).
- SpatialDM: for significant fine-grained ligand-receptor pair selection.
- SparseAEH: for fastly cell-cell communication pattern discovery, 1000 times speedup to SpatialDE.
The full manual is at FineST tutorial for installation, tutorials and examples.
Spot interpolation for Visium datasets.
Step1 and Step2 Train FineST and impute super-resolved spatial RNA-seq.
Step3 Fine-grained LR pair and CCC pattern discovery.
Downstream analysis Cell type deconvolution, ROI region cropping, cell-cell colocalization.
Performance evaluation of FineST vs (TESLA and iSTAR).
Inference comparison of FineST vs iStar (only LR genes).
Please contact Lingyu Li ([email protected]) or Yuanhua Huang ([email protected]) if any enquiry.