A simple and easy-to-use toolkit for GPU scheduling.
- Python >= 3.6
- requests >= 2.24.0
- pydantic >= 1.7.1
- gpustat >= 0.6.0
- flask >= 1.1.2
- apscheduler >= 3.6.3
- Install dependencies.
$ pip install -r requirements.txt
- Install watchmen.
Install from source code:
$ pip install -e .
Or you can install the stable version package from pypi.
$ pip install gpu-watchmen -i https://pypi.org/simple
- Start the server
The default port of the server is 62333
$ python -m watchmen.server
If you want the server to be running backend, try:
$ nohup python -m watchmen.server 1>watchmen.log 2>&1 &
There are some configurations for the server
usage: server.py [-h] [--host HOST] [--port PORT]
[--queue_timeout QUEUE_TIMEOUT]
[--request_interval REQUEST_INTERVAL]
[--status_queue_keep_time STATUS_QUEUE_KEEP_TIME]
optional arguments:
-h, --help show this help message and exit
--host HOST host address for api server
--port PORT port for api server
--queue_timeout QUEUE_TIMEOUT
timeout for queue waiting (seconds)
--request_interval REQUEST_INTERVAL
interval for gpu status requesting (seconds)
--status_queue_keep_time STATUS_QUEUE_KEEP_TIME
hours for keeping the client status. set `-1` to keep
all clients' status
- Modify the source code in your project:
from watchmen import WatchClient
client = WatchClient(id="short description of this running", gpus=[1],
server_host="127.0.0.1", server_port=62333)
client.wait()
When the program goes on after client.wait()
, you are in the working queue.
Watchmen supports two requesting mode:
queue
mode means you are waiting for the gpus ingpus
arguments.schedule
mode means you are waiting for the server to sparereq_gpu_num
of available GPUs ingpus
. You can check examples inexample/
for further reading.
# single card queue mode
$ cd example && python single_card_mnist.py --id="single" --cuda=0 --wait
# single card schedule mode
$ cd example && python single_card_mnist.py --id="single schedule" --cuda=0,2,3 --req_gpu_num=1 --wait_mode="schedule" --wait
# queue mode
$ cd example && python multi_card_mnist.py --id="multi" --cuda=2,3 --wait
# schedule mode
$ cd example && python multi_card_mnist.py --id='multi card scheduling wait' --cuda=1,0,3 --req_gpu_num=2 --wait="schedule"
- Check the queue in browser.
Open the following link to your browser: http://<server ip address>:<server port>
, for example: http://192.168.126.143:62333
.
And you can get a result like the demo below. Please be aware that the page is not going to change dynamically, so you can refresh the page manually to check the latest status.
Home page: GPU status
- Reminder when program is finished.
watchmen
also support email and other kinds of reminders for message informing.
For example, you can send yourself an email when the program is finished.
from watchmen.reminder import send_email
... # your code here
send_email(
host="smtp.163.com", # email host to login, like `smtp.163.com`
port=25, # email port to login, like `25`
user="***@163.com", # user email address for login, like `***@163.com`
password="***", # password or auth code for login
receiver="***@outlook.com", # receiver email address
html_message="<h1>Your program is finished!</h1>", # content, html format supported
subject="Proram Finished Notice" # email subject
)
To get more reminders, please check watchmen/reminder.py
.
- v0.3.8: change
OK
status to be shown only in the finished queue, and showready
in the working queue. Fix severe bug when scheduling - v0.3.7: much faster due to lock free changes! fix timeout and schedule bug
- v0.3.6: fix front-end api hostname bug
- v0.3.5: fix front-end api port bug
- v0.3.4: refreshed interface, add
register_time
field, fixcheck_finished
bug - v0.3.3: fix
check_finished
bug in server end, quit the main thread if the sub-thread is quit, and remove the backend cmd in the main thread - v0.3.2: fix
WatchClient
bug - v0.3.1: change
Client
intoWatchClient
, fixClientCollection
andsend_email
bug - v0.3.0: support gpu scheduling, fix blank input output, fix
check_gpus_existence
- v0.2.2: fix html package data, add multi-card example
- import user authentication modules to help the working queue delete operations
- read programs' pids to help reading program working status and kill tasks remotely
- test and support distributed model parallel configurations (with
python -m torch.distributed.launch
) - prettify the web page and divide functions into different tabs
- gpu using stats for each user and process
- quit the main thread if the sub-thread is quit
- change
Client
intoWatchClient
, in case of any ambiguity -
ClientCollection/__contains__
function should not includefinished_queue
, to help theid
releases - subject bug in
reminder/send_email()
- add schedule feature, so clients only have to request for a number and range of gpus, and the server will assign the gpu num to clients
- add reminders
- add webui html support
- add examples