Monorepo with packages to provide anomaly detection training, inference and export for computer vision.
🐍 Installation • 📦 Packages • 🌐 Webapp • 📙 Documentation • 🔍 License
This monorepo currently consists of the following packages for anomaly detection:
sinapsis-anomalib
Install using your package manager of choice. We encourage the use of uv
Example with uv
:
uv pip install sinapsis-anomalib --extra-index-url https://pypi.sinapsis.tech
or with raw pip
:
pip install sinapsis-anomalib --extra-index-url https://pypi.sinapsis.tech
Important
Templates in each package may require extra dependencies. For development, we recommend installing the package with all the optional dependencies:
with uv
:
uv pip install sinapsis-anomalib[all] --extra-index-url https://pypi.sinapsis.tech
or with raw pip
:
pip install sinapsis-anomalib[all] --extra-index-url https://pypi.sinapsis.tech
Tip
You can also install all the packages within this project:
uv pip install sinapsis-anomaly-detection[all] --extra-index-url https://pypi.sinapsis.tech
Packages summary
- Sinapsis Anomalib
- AnomalibTorchInference
Run anomaly detection inference using PyTorch models. - AnomalibOpenVINOInference
Perform optimized inference using OpenVINO-accelerated models. - AnomalibTrain
Train custom anomaly detection models with Anomalib. - AnomalibExport
Export trained models for deployment in different formats.
- AnomalibTorchInference
Tip
Use CLI command sinapsis info --all-template-names
to show a list with all the available Template names installed with Sinapsis Anomaly Detection.
Tip
Use CLI command sinapsis info --example-template-config TEMPLATE_NAME
to produce an example Agent config for the Template specified in TEMPLATE_NAME.
For example, for AnomalibTorchInference use sinapsis info --example-template-config AnomalibTorchInference
to produce the following example config:
agent:
name: my_test_agent
templates:
- template_name: InputTemplate
class_name: InputTemplate
attributes: {}
- template_name: AnomalibTorchInference
class_name: AnomalibTorchInference
template_input: InputTemplate
attributes:
model_path: '/path/to/model.pt'
transforms: null
device: cuda
The webapp offers an interface for anomaly detection on images using pretrained models. Upload images and visualize results (labels, bboxes, or masks) based on the provided agent configuration.
Important
To run the app you first need to clone this repository:
git clone [email protected]:Sinapsis-ai/sinapsis-anomaly-detection.git
cd sinapsis-anomaly-detection
Note
If you'd like to enable external app sharing in Gradio, export GRADIO_SHARE_APP=True
Note
Model training is performed when starting the webapp if an exported model does not exist in the MODEL_PATH
location.
🐳 Docker
IMPORTANT This docker image depends on the sinapsis-nvidia:base image. Please refer to the official sinapsis instructions to Build with Docker.
- Build the sinapsis-anomalib image:
docker compose -f docker/compose.yaml build
- Start the app container:
docker compose -f docker/compose_apps.yaml up sinapsis-anomalib-gradio -d
- Check the status:
docker logs -f sinapsis-anomalib-gradio
- The logs will display the URL to access the webapp, e.g.:
NOTE: The url can be different, check the output of the logs
Running on local URL: http://127.0.0.1:7860
- To stop the app:
docker compose -f docker/compose_apps.yaml down
Webapp Configuration
Customize the webapp behavior by updating the environment
fields in docker/compose_apps.yaml
:
For custom inference agent:
AGENT_CONFIG_PATH: "/app/configs/inference/custom_torch_demo_agent.yml"
For custom training agent:
TRAINING_CONFIG: "/app/configs/custom_train_export_agent.yaml"
For custom inference model path:
MODEL_PATH: "/app/artifacts/exported_models/weights/torch/custom_model.pt"
For custom test data:
TEST_DIR: "/app/artifacts/data/custom_test_data"
💻 UV
To run the webapp using the uv
package manager, please:
- Create the virtual environment and sync the dependencies:
uv sync --frozen
- Install the wheel:
uv pip install sinapsis-anomaly-detection[all] --extra-index-url https://pypi.sinapsis.tech
- Run the webapp:
uv run webapps/anomalib_gradio_app.py
- The terminal will display the URL to access the webapp, e.g.:
NOTE: The url can be different, check the output of the terminal
Running on local URL: http://127.0.0.1:7860
Webapp Configuration
Customize the webapp behavior by exporting the following variables with your custom values before running the app:
For custom inference agent:
export AGENT_CONFIG_PATH="packages/sinapsis_anomalib/src/sinapsis_anomalib/configs/inference/custom_torch_demo_agent.yml"
For custom training agent:
export TRAINING_CONFIG="packages/sinapsis_anomalib/src/sinapsis_anomalib/configs/custom_train_export_agent.yaml"
For custom inference model path:
export MODEL_PATH="artifacts/exported_models/weights/torch/custom_model.pt"
For custom test data:
export TEST_DIR="artifacts/data/custom_test_data"
Documentation for this and other sinapsis packages is available on the sinapsis website
Tutorials for different projects within sinapsis are available at sinapsis tutorials page
This project is licensed under the AGPLv3 license, which encourages open collaboration and sharing. For more details, please refer to the LICENSE file.
For commercial use, please refer to our official Sinapsis website for information on obtaining a commercial license.