Skip to content

SimoneAvellino/yt_comments_analysis

Repository files navigation

YouTube Comments Analysis

This project analyzes the sentiment of YouTube video comments to provide insights into user engagement and opinions.

Installation

Clone the repository and install the required dependencies:

git clone https://github.com/SimoneAvellino/CMiner

cd yt_comments_analysis

pip install -r requirements.txt

Usage

python main.py <youtube_video_link> [--number_of_comments N]
  • <youtube_video_link>: The URL of the YouTube video you want to analyze.
  • --number_of_comments N (optional): Limits the number of comments analyzed. Useful for videos with a large number of comments to speed up processing.

Example

python main.py https://www.youtube.com/watch\?v\=niKMwO8NIiM 
Video Title:
     NLTK Tutorial 03: Tokenization | NLTK Tokenization | NLTK | Python
Video Description:
     NLTK Tutorial 03: Tokenization | NLTK Tokenization
     | NLTK | Python  GitHub JupyterNotebook:
     https://github.com/siddiquiamir/NLTK-Text-Mining
     GitHub Data: https://github.com/siddiquiamir/Data
     About this video: In this video, you will learn
     how to about Tokenization in NLTK  Large Language
     Model (LLM) - LangChain LangChain: https://www.you
     tube.com/playlist?list=PLBSCvBlTOLa_WxDWdDoHSP3u2C
     dGImtwM  Large Language Model (LLM) - LlamaIndex
     LlamaIndex: https://www.youtube.com/playlist?list=
     PLBSCvBlTOLa-vUt7mCECzaJjJEjos6K-l  Machine
     Learning Model Deployment ML Model Deployment: htt
     ps://www.youtube.com/playlist?list=PLBSCvBlTOLa9XS
     cezTGcOsXJidvmFQm5o  Spark with Python (PySpark)
     PySpark: https: https://www.youtube.com/playlist?l
     ist=PLBSCvBlTOLa9oTtXH3vNaaw7jT9kXFwjb  Data
     Preprocessing (scikit-learn) Data Preprocessing
     Python: https://www.youtube.com/playlist?list=PLBS
     CvBlTOLa8_IHxi8x2P9ySJgHWGhppn  Social Media Links
     YouTube:
     https://www.youtube.com/c/statswire Twitter (X) :
     https://twitter.com/StatsWire  #llm #ai #genai
     #generativeai #statswire #pyspark #python
     #pythonprogramming #pythontutorial
     #machinelearning #datascience
     #naturallanguageprocessing #nlp  #nltk
Stats on comments:
     Number of comments retrieved (all): 12
     Number of likes: 188
     Number of views: 13748
Evaluating comments: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████| 12/12 [00:00<00:00, 111.89comment/s]
Sentiment Analysis:
     Positive: 75.0 %
     Negative: 8.333333333333332 %
     Neutral: 16.666666666666664 %

Implementation details

YouTube Comments Analysis

  • The diagram above illustrates the workflow: comments are fetched from YouTube, processed for sentiment analysis, and results are summarized.

The machine learning model is trained on a dataset on kaggle

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •