Skip to content

SilentJungle399/bullseye-model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLO model for Bullseye detection

This repository contains code for training a YOLO model to detect a bullseye.

Dataset

A custom dataset was used to train the model. The dataset consists of images containing bullseyes.
The dataset must follow YOLOv11 standards and must be placed inside a directory named dataset at the project root.

Models

Two primary models were trained:

  • best: Trained on my PC
  • best-colab: Trained on Google Colab

Files & Scripts

Training & Model Comparison

  • train.py: Contains all parameters to train the model using Ultralytics library.
  • comp_ts_onnx.py: Compares the inference time of ONNX and TorchScript formats for both best and best-colab models on a Raspberry Pi 4B.

Benchmarking

  • benchmark_model.py: Runs benchmarks on the trained models.
  • benchmarks.log: Contains benchmark results for both best and best-colab models.

Testing

  • opencv_test.py: Tests the model on a set of pre-saved bullseye images.
  • picam_test.py: Tests the Raspberry Pi camera feed and evaluates OpenCV’s HoughCircles method for detecting bullseyes (which was found inefficient).
  • yolo_test.py: Runs live inference using the trained YOLO model on a camera stream.

Dataset Configuration

  • data-linux.yaml & data-win.yaml: YAML files specifying dataset paths (different absolute paths for Linux and Windows).

Results

  • The results.csv has training results over 130 epochs.
Epoch Train Box Loss Train Cls Loss Train DFL Loss Precision (B) Recall (B) mAP50 (B) mAP50-95 (B) Val Box Loss Val Cls Loss Val DFL Loss LR PG0 LR PG1 LR PG2
1 3.8923 3.30073 4.08417 0.01545 0.46829 0.0866 0.06706 3.62925 3.66435 4.14368 0.0006 0.0006 0.0006
2 2.87993 1.98997 3.08428 0.00706 0.51951 0.18509 0.12929 3.6334 3.48378 4.14384 0.00121 0.00121 0.00121
3 1.96915 1.49711 2.19448 0.23748 0.34634 0.15484 0.06874 2.9761 2.70784 3.03805 0.00182 0.00182 0.00182
..... .............. .............. .............. ............. .......... ........... .......... ............ ............ ............ ....... ....... .......
129 0.80191 0.58796 1.18512 0.99647 0.97805 0.97559 0.79891 0.74167 0.3649 1.15386 0.00073 0.00073 0.00073
130 0.79106 0.58632 1.17945 0.99751 0.97783 0.97597 0.78646 0.77879 0.3609 1.16972 0.00072 0.00072 0.00072
131 0.79467 0.58256 1.17882 0.99669 0.97805 0.97628 0.79426 0.75459 0.34918 1.15876 0.00071 0.00071 0.00071

results

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published