Skip to content

Release V2.1

Compare
Choose a tag to compare
@SeanNaren SeanNaren released this 29 Jan 17:21
· 30 commits to master since this release

This release represents the last release before the PyTorch Lightning Integration. This is important in case anyone would like to use the old code base before we pivot to Lightning.

AN4

Training command:

python train.py --rnn-type lstm --hidden-size 1024 --hidden-layers 5  --train-manifest data/an4_train_manifest.csv --val-manifest data/an4_val_manifest.csv --epochs 70 --num-workers 16 --cuda  --learning-anneal 1.01 --batch-size 32 --no-sortaGrad --visdom  --opt-level O1 --loss-scale 1 --id an4 --checkpoint --save-folder deepspeech.pytorch/an4/ --model-path deepspeech.pytorch/an4/deepspeech_final.pth

Test Command:

python test.py --model-path an4_pretrained_v2.pth --test-manifest data/an4_val_manifest.csv --cuda --half
Dataset WER CER
AN4 test 10.349 7.076

Download here.

Librispeech

Training command:

python train.py --rnn-type lstm --hidden-size 1024 --hidden-layers 5  --train-manifest data/libri_train_manifest.csv --val-manifest data/libri_val_manifest.csv --epochs 60 --num-workers 16 --cuda  --learning-anneal 1.01 --batch-size 64 --no-sortaGrad --visdom  --opt-level O1 --loss-scale 1 --id libri --checkpoint --save-folder deepspeech.pytorch/librispeech/ --model-path deepspeech.pytorch/librispeech/deepspeech_final.pth

Test Command:

python test.py --model-path librispeech_pretrained_v2.pth --test-manifest data/libri_test_clean.csv --cuda --half
python test.py --model-path librispeech_pretrained_v2.pth --test-manifest data/libri_test_other.csv --cuda --half
Dataset WER CER
Librispeech clean 9.919 3.307
Librispeech other 28.116 12.040

With 3-Gram ARPA LM with tuned alpha/beta values (alpha=1.97, beta=4.36, beam-width=1024)

Test Command:

python test.py --test-manifest libri_test_clean.csv --lm-path 3-gram.pruned.3e-7.arpa --decoder beam --alpha 1.97 --beta 4.36 --model-path librispeech_pretrained_v2.pth --lm-workers 8 --num-workers 16 --cuda --half --beam-width 1024
python test.py --test-manifest libri_test_other.csv --lm-path 3-gram.pruned.3e-7.arpa --decoder beam --alpha 1.97 --beta 4.36 --model-path librispeech_pretrained_v2.pth --lm-workers 8 --num-workers 16 --cuda --half --beam-width 1024
Dataset WER CER
Librispeech clean 6.654 2.705
Librispeech other 19.889 10.467

Download here.

TEDLIUM

Training command:

python train.py --rnn-type lstm --hidden-size 1024 --hidden-layers 5  --train-manifest data/ted_train_manifest.csv --val-manifest data/ted_val_manifest.csv --epochs 60 --num-workers 16 --cuda  --learning-anneal 1.01 --batch-size 64 --no-sortaGrad --visdom  --opt-level O1 --loss-scale 1 --id ted --checkpoint --save-folder deepspeech.pytorch/tedlium/ --model-path deepspeech.pytorch/tedlium/deepspeech_final.pth

Test Command:

python test.py --model-path ted_pretrained_v2.pth --test-manifest data/ted_test_manifest.csv --cuda --half
Dataset WER CER
Ted test 30.886 11.196

Download here.