-
Notifications
You must be signed in to change notification settings - Fork 620
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #458 from SeanNaren/feature/V2
Feature/v2
- Loading branch information
Showing
13 changed files
with
224 additions
and
281 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import argparse | ||
import json | ||
import sys | ||
from multiprocessing.pool import Pool | ||
|
||
import numpy as np | ||
import torch | ||
from tqdm import tqdm | ||
|
||
from decoder import BeamCTCDecoder | ||
from model import DeepSpeech | ||
from opts import add_decoder_args | ||
|
||
parser = argparse.ArgumentParser(description='Tune an ARPA LM based on a pre-trained acoustic model output') | ||
parser.add_argument('--model-path', default='models/deepspeech_final.pth', | ||
help='Path to model file created by training') | ||
parser.add_argument('--saved-output', default="", type=str, help='Path to output from test.py') | ||
parser.add_argument('--num-workers', default=16, type=int, help='Number of parallel decodes to run') | ||
parser.add_argument('--output-path', default="tune_results.json", help="Where to save tuning results") | ||
parser.add_argument('--lm-alpha-from', default=0.0, type=float, help='Language model weight start tuning') | ||
parser.add_argument('--lm-alpha-to', default=3.0, type=float, help='Language model weight end tuning') | ||
parser.add_argument('--lm-beta-from', default=0.0, type=float, | ||
help='Language model word bonus (all words) start tuning') | ||
parser.add_argument('--lm-beta-to', default=0.5, type=float, | ||
help='Language model word bonus (all words) end tuning') | ||
parser.add_argument('--lm-num-alphas', default=45, type=float, help='Number of alpha candidates for tuning') | ||
parser.add_argument('--lm-num-betas', default=8, type=float, help='Number of beta candidates for tuning') | ||
parser = add_decoder_args(parser) | ||
args = parser.parse_args() | ||
|
||
if args.lm_path is None: | ||
print("error: LM must be provided for tuning") | ||
sys.exit(1) | ||
|
||
model = DeepSpeech.load_model(args.model_path) | ||
|
||
saved_output = np.load(args.saved_output) | ||
|
||
|
||
def init(beam_width, blank_index, lm_path): | ||
global decoder | ||
decoder = BeamCTCDecoder(model.labels, lm_path=lm_path, beam_width=beam_width, num_processes=args.lm_workers, | ||
blank_index=blank_index) | ||
|
||
|
||
def decode_dataset(params): | ||
lm_alpha, lm_beta = params | ||
global decoder | ||
decoder._decoder.reset_params(lm_alpha, lm_beta) | ||
|
||
total_cer, total_wer, num_tokens, num_chars = 0, 0, 0, 0 | ||
for out, sizes, target_strings in saved_output: | ||
out = torch.Tensor(out).float() | ||
sizes = torch.Tensor(sizes).int() | ||
decoded_output, _, = decoder.decode(out, sizes) | ||
for x in range(len(target_strings)): | ||
transcript, reference = decoded_output[x][0], target_strings[x][0] | ||
wer_inst = decoder.wer(transcript, reference) | ||
cer_inst = decoder.cer(transcript, reference) | ||
total_cer += cer_inst | ||
total_wer += wer_inst | ||
num_tokens += len(reference.split()) | ||
num_chars += len(reference) | ||
|
||
wer = float(total_wer) / num_tokens | ||
cer = float(total_cer) / num_chars | ||
|
||
return [lm_alpha, lm_beta, wer * 100, cer * 100] | ||
|
||
|
||
if __name__ == '__main__': | ||
p = Pool(args.num_workers, init, [args.beam_width, model.labels.index('_'), args.lm_path]) | ||
|
||
cand_alphas = np.linspace(args.lm_alpha_from, args.lm_alpha_to, args.lm_num_alphas) | ||
cand_betas = np.linspace(args.lm_beta_from, args.lm_beta_to, args.lm_num_betas) | ||
params_grid = [(float(alpha), float(beta)) for alpha in cand_alphas | ||
for beta in cand_betas] | ||
|
||
scores = [] | ||
for params in tqdm(p.imap(decode_dataset, params_grid), total=len(params_grid)): | ||
scores.append(list(params)) | ||
print("Saving tuning results to: {}".format(args.output_path)) | ||
with open(args.output_path, "w") as fh: | ||
json.dump(scores, fh) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
import argparse | ||
import json | ||
|
||
parser = argparse.ArgumentParser(description='Select the best parameters based on the WER') | ||
parser.add_argument('--input-path', type=str, help='Output json file from search_lm_params') | ||
args = parser.parse_args() | ||
|
||
with open(args.input_path) as f: | ||
results = json.load(f) | ||
|
||
min_results = min(results, key=lambda x: x[2]) # Find the minimum WER (alpha, beta, WER, CER) | ||
print("Alpha: %f \nBeta: %f \nWER: %f\nCER: %f" % tuple(min_results)) |
Oops, something went wrong.