Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

HW3 Guillard & Ghio #5

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,13 @@ uuid = "2aa259a0-4d4c-11e9-0909-ad9b1ef308f5"
authors = ["florian oswald <[email protected]>"]
version = "0.1.0"

[deps]
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Ipopt = "b6b21f68-93f8-5de0-b562-5493be1d77c9"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
NLopt = "76087f3c-5699-56af-9a33-bf431cd00edd"

[extras]
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

Expand Down
188 changes: 76 additions & 112 deletions src/HWconstrained.jl
Original file line number Diff line number Diff line change
@@ -1,117 +1,81 @@
module HWconstrained

greet() = print("Hello World!")

using JuMP, NLopt, DataFrames, Ipopt
using LinearAlgebra

export data, table_NLopt, table_JuMP

function data(a=0.5)









return Dict("a"=>a,"na"=>na,"nc"=>nc,"ns"=>ns,"nss"=>nss,"e"=>e,"p"=>p,"z"=>z,"pi"=>pi)
end


function max_JuMP(a=0.5)

return Dict("obj"=>objective_value(m),"c"=>value(c),"omegas"=>[value(omega[i]) for i in 1:length(omega)])
end

function table_JuMP()
d = DataFrame(a=[0.5;1.0;5.0],c = zeros(3),omega1=zeros(3),omega2=zeros(3),omega3=zeros(3),fval=zeros(3))
for i in 1:nrow(d)
xx = max_JuMP(d[i,:a])
d[i,:c] = xx["c"]
d[i,:omega1] = xx["omegas"][1]
d[i,:omega2] = xx["omegas"][2]
d[i,:omega3] = xx["omegas"][3]
d[i,:fval] = xx["obj"]
end
return d
end








function obj(x::Vector,grad::Vector,data::Dict)
























end

function constr(x::Vector,grad::Vector,data::Dict)














end

function max_NLopt(a=0.5)








end

function table_NLopt()
d = DataFrame(a=[0.5;1.0;5.0],c = zeros(3),omega1=zeros(3),omega2=zeros(3),omega3=zeros(3),fval=zeros(3))
for i in 1:nrow(d)
xx = max_NLopt(d[i,:a])
for j in 2:ncol(d)-1
d[i,j] = xx[2][j-1]
end
d[i,end] = xx[1]
end
return d
end
using JuMP, NLopt, DataFrames, Ipopt
using LinearAlgebra
export data, table_NLopt, table_JuMP

### Question 1
function data(a=0.5)
n=3
p=[1, 1, 1]
e=[2, 0, 0]
s1=s2=4
z1=[1, 1, 1, 1]
z2=[0.72, 0.92, 1.12, 1.32]
z3=[0.86, 0.96, 1.06, 1.16]
z=[[1, i, j] for i in z2 for j in z3]
z = vcat(z'...)
pi = repeat([1/16], 16)
a=0.5
na=3
nc=4
ns=4
nss=16

return Dict("a"=>a,"na"=>na,"nc"=>nc,"ns"=>ns,"nss"=>nss,"e"=>e,"p"=>p,"z"=>z,"pi"=>pi)
end
#end

d=data()

#### Question 2

function obj(x::Vector,grad::Vector,data::Dict)
A = data["a"]
Z = data["z"]
pi = data["pi"]
if length(grad) > 0
grad[1] = A*exp.(-A*x[1])
for i in 1:3
grad[i+1] = sum(pi .* Z[:,i] .*A.*exp.(-A.*Z*x[i+1]))
end
end
return -exp.(-A*x[1])+ sum(pi.*-exp.(-A*Z*x[2:4]))
end
obj(ones(4), zeros(4), d)

function constr(x::Vector,grad::Vector,data::Dict)
if length(grad) > 0
grad[1] = d["a"]*exp(-d["a"]*x[1])
grad[2:end] = d["p"]
end
return x[1] + sum(d["p"].*(x[2:end].-d["e"]))
end

constr(ones(4), zeros(4), d) # keep track of # function evaluations

function max_NLopt(a=0.5)
d = data(a)
e= d["e"]
optimum = Opt(:LD_MMA, 4)
lower_bounds!(optimum, [0., -Inf, -Inf, -Inf])
max_objective!(optimum, (x, g)->obj(x, g, d))
inequality_constraint!(optimum, (x, g)->constr(x, g, d), 1e-8)
ftol_rel!(optimum, 1e-8)
NLopt.optimize(optimum, vcat(0,e))
end

function table_NLopt()
d = DataFrame(a=[0.5;1.0;5.0],c = zeros(3),omega1=zeros(3),omega2=zeros(3),omega3=zeros(3),fval=zeros(3))
for i in 1:nrow(d)
xx = max_NLopt(d[i,:a])
for j in 2:ncol(d)-1
d[i,j] = xx[2][j-1]
end
d[i,end] = xx[1]
end
return d
end



Expand Down
97 changes: 50 additions & 47 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,52 +2,55 @@ using HWconstrained
using Test

@testset "HWconstrained.jl" begin
@testset "testing components" begin

@testset "tests gradient of objective function" begin






end


@testset "tests gradient of constraint function" begin






end
end

@testset "testing result of both maximization methods" begin

truth = HWconstrained.DataFrame(a=[0.5;1.0;5.0],
c = [1.008;1.004;1.0008],
omega1=[-1.41237;-0.20618;0.758763],
omega2=[0.801455;0.400728;0.0801455],
omega3=[1.60291;0.801455;0.160291],
fval=[-1.20821;-0.732819;-0.013422])

@testset "checking result of NLopt maximization" begin

t1 = table_NLopt()
for c in names(truth)
@test all(maximum.(abs.(t1[c].-truth[c])) .< tol2)
end
end


@testset "checking result of NLopt maximization" begin
t1 = table_JuMP()
for c in names(truth)
@test all(maximum.(abs.(t1[c].-truth[c])) .< tol2)
end
end
end

@testset "testing components" begin
d=data()
A=d["a"]
u(x)=-exp(-A*x)
grad=ones(4)


@testset "tests gradient of objective function" begin

end





@testset "tests gradient of constraint function" begin

end

end



@testset "testing result of both maximization methods" begin
truth = HWconstrained.DataFrame(a=[0.5;1.0;5.0],

c = [1.008;1.004;1.0008],

omega1=[-1.41237;-0.20618;0.758763],

omega2=[0.801455;0.400728;0.0801455],

omega3=[1.60291;0.801455;0.160291],

fval=[-1.20821;-0.732819;-0.013422])

tol2=1e-2

@testset "checking result of NLopt maximization" begin
t1 = table_JuMP()
for c in names(truth)
@test all(maximum.(abs.(t1[c].-truth[c])) .< tol2)
end
end

@testset "checking result of NLopt maximization" begin
@test all(maximum.(abs.(t1[c].-truth[c])) .< tol2)
end
end
end
end