Python module to analyze time-on-stream Catalyst testing results from Round Robin test
- All specified in
setup.py
conda create -n pycatrobin python=3.12
conda activate pycatrobin- choice1) Directly install using pip
pip install git+https://github.com/dongjae-shin/PyCatRobin.git
- choice2) Clone repository & install using pip
git clone https://github.com/dongjae-shin/PyCatRobin.git cd PyCatRobin pip install .
- Example python codes to use
pycatrobinare inexamples/directory. - In the
examples/, run as follows:python ./extract_from_gc_data_snr.py python ./Welchs_t_test.py python ./fANOVA.py
- See the instructions in the
examples/folder. - Currently, Welch's t-test and fANOVA codes are separate scripts from
pycatrobin. They will be incorporated into the main package in the near future.
- Quantifying Experimental Uncertainty in Catalyst Deactivation: Round-Robin Testing and Implications for Machine-Learned Prediction, S. Bac, D. Shin, S. Hong, J. Heinlein, A. Khan, G. Barber, Z. Chen, M. M. Albrechtsen, C. Tassone*, R. M. Rioux*, M. Cargnello*, S. R. Bare*, K. Winther*, P. Christopher*, A. S. Hoffman*, submitted (2025).
- Original codes for t-test and fANOVA analyses were written by Dr. Selin Bac (UCSB) and Michael Albrechtsen (DTU), respectively.
