Skip to content

SUNCAT-Center/PyCatRobin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyCatRobin

img

Python License: MIT pandas

Python module to analyze time-on-stream Catalyst testing results from Round Robin test

Requirements

  • All specified in setup.py

Getting started

1. Make a virtual environment (e.g., when using conda):

conda create -n pycatrobin python=3.12
conda activate pycatrobin

2. Installation

  • choice1) Directly install using pip
    pip install git+https://github.com/dongjae-shin/PyCatRobin.git
  • choice2) Clone repository & install using pip
    git clone https://github.com/dongjae-shin/PyCatRobin.git
    cd PyCatRobin
    pip install .

3. Run example codes (under development)

  • Example python codes to use pycatrobin are in examples/ directory.
  • In the examples/, run as follows:
    python ./extract_from_gc_data_snr.py
    python ./Welchs_t_test.py
    python ./fANOVA.py
  • See the instructions in the examples/ folder.
  • Currently, Welch's t-test and fANOVA codes are separate scripts from pycatrobin. They will be incorporated into the main package in the near future.

Related publication

  • Quantifying Experimental Uncertainty in Catalyst Deactivation: Round-Robin Testing and Implications for Machine-Learned Prediction, S. Bac, D. Shin, S. Hong, J. Heinlein, A. Khan, G. Barber, Z. Chen, M. M. Albrechtsen, C. Tassone*, R. M. Rioux*, M. Cargnello*, S. R. Bare*, K. Winther*, P. Christopher*, A. S. Hoffman*, submitted (2025).

Acknowledgement

  • Original codes for t-test and fANOVA analyses were written by Dr. Selin Bac (UCSB) and Michael Albrechtsen (DTU), respectively.

About

PyCatRobin: Python module to analyze time-on-stream Catalyst testing results from Round Robin test

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages