Skip to content

Commit

Permalink
Merge pull request #286 from SANDAG/model_updates_to_wiki
Browse files Browse the repository at this point in the history
Documentation updates to model inputs, outputs and typo corrections
  • Loading branch information
JiaXu1024 authored Jan 7, 2025
2 parents 1b858c2 + 245da25 commit 267d1c1
Show file tree
Hide file tree
Showing 3 changed files with 482 additions and 874 deletions.
4 changes: 2 additions & 2 deletions docs/design/demand/resident.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,15 +14,15 @@ The resident model design is shown below.

![](../../images/design/resident_model_design.png)

The first model in the sequence is disaggregate accessibilities. This is a recent addition to ActivitySim in which the tour destination choice model is run for a prototypical sample population covering key market segments and destination choice logsums from the model are written out for each tour in the population. These destination choice logsums are then merged with the actual synthetic population and used as accessibility variables in downstream models such as auto ownership, coordinated daily activity patterns, and tour frequency. are mandatory location choice; this model is run for all workers and students regardless of whether they attend work or school on the simulated day.
The first model in the sequence is disaggregate accessibilities. This is a recent addition to ActivitySim in which the tour destination choice model is run for a prototypical sample population covering key market segments and destination choice logsums from the model are written out for each tour in the population. These destination choice logsums are then merged with the actual synthetic population and used as accessibility variables in downstream models such as auto ownership, coordinated daily activity patterns, and tour frequency are mandatory location choice; this model is run for all workers and students regardless of whether they attend work or school on the simulated day.

Next a set of long-term and mobility models are run. The first model in the sequence predicts whether an autonomous vehicle is owned by the household. This model conditions the next model, which predicts the number of autos owned. If an autonomous vehicle is owned, multiple cars are less likely. Next, the mandatory (work and school) location choice models are run. The work location choice models includes a model to predict whether the worker has a usual out-of-home work location or exclusively works from home. If the worker chooses to work from home, they will not generate a work tour. An external worker identification model determines whether each worker with an out-of-home workplace location works within the region or external to the region. If they work external to the region, the external station is identified. Any primary destination of any work tours generated by the worker will be the external station chosen by this model. A work location choice model predicts the internal work location of each internal worker, and a school location choice model predicts the school location of each student.

Next, a set of models predicts whether workers and students have subsidized transit fares and if so, the percent of transit fare that is subsidized, and whether each person in the household owns a transit pass. A vehicle type choice model then runs, which predicts the body type, fuel type, and age of each vehicle owned by the household; this model was extended to predict whether each vehicle is autonomous, conditioned by the autonomous vehicle ownership model.

Next, we predict whether each household has access to a vehicle transponder which can be used for managed lane use. We assume that all vehicles built after a certain year (configurable by the user) are equipped with transponders. Next we predict whether each worker has subsidized parking available at work. Finally we predict the telecommute frequency of each worker, which affects downstream models including the daily activity pattern model, the non-mandatory tour frequency model, and stop frequency models.

Next the daily and tour level models are run. The first daily model is the daily activity pattern model is run, which predicts the general activity pattern type for every household member. Then Mandatory tours are generated for workers and students, the tours are scheduled (their location is already predicted by the work/school location choice model), a vehicle availability model is run that predicts which household vehicle would be used for the tour, and the tour mode is chosen. After mandatory tours are generated, a school pickup/dropoff model forms half-tours where children are dropped off and/or picked up at school. The model assigns chaperones to drive or ride with children, groups children together into “bundles” for ride-sharing, and assigns the chaperone task to either a generated work tour or generates a new tour for the purpose of ridesharing. Fully joint tours – tours where two or more household members travel together for the entire tour - are generated at a household level, their composition is predicted (adults, children or both), the participants are determined, the vehicle availability model is run, and a tour mode is chosen. The primary destination of fully joint tours is predicted, the tours are scheduled, the vehicle availability model is run, and a tour mode is chosen. Next, non-mandatory tours are generated, their primary destination is chosen, they are scheduled, the vehicle availability model is run, and a tour mode is chosen for each. At-work subtours are tours that start and end at the workplace. These are generated, scheduled (with constraints that the start and end times must nest within the start and end time of the parent work tour), a primary destination is selected, the vehicle availability model is run, and a tour mode is chosen.
Next the daily and tour level models are run. The first daily model run is the daily activity pattern model, which predicts the general activity pattern type for every household member. Then Mandatory tours are generated for workers and students, the tours are scheduled (their location is already predicted by the work/school location choice model), a vehicle availability model is run that predicts which household vehicle would be used for the tour, and the tour mode is chosen. After mandatory tours are generated, a school pickup/dropoff model forms half-tours where children are dropped off and/or picked up at school. The model assigns chaperones to drive or ride with children, groups children together into “bundles” for ride-sharing, and assigns the chaperone task to either a generated work tour or generates a new tour for the purpose of ridesharing. Fully joint tours – tours where two or more household members travel together for the entire tour - are generated at a household level, their composition is predicted (adults, children or both), the participants are determined, the vehicle availability model is run, and a tour mode is chosen. The primary destination of fully joint tours is predicted, the tours are scheduled, the vehicle availability model is run, and a tour mode is chosen. Next, non-mandatory tours are generated, their primary destination is chosen, they are scheduled, the vehicle availability model is run, and a tour mode is chosen for each. At-work subtours are tours that start and end at the workplace. These are generated, scheduled (with constraints that the start and end times must nest within the start and end time of the parent work tour), a primary destination is selected, the vehicle availability model is run, and a tour mode is chosen.

The major tour modes are shown below:
```mermaid
Expand Down
Loading

0 comments on commit 267d1c1

Please sign in to comment.