Skip to content
/ abnet Public
forked from syhw/abnet

ABNet is a "same/different"-based loss trained neural net.

Notifications You must be signed in to change notification settings

RolT/abnet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

abnet

ABNet is a "same/different"-based loss trained neural net.

Data preprocessing

To reproduce the results in the IEEE SLT 2014 paper, you need:

  • TIMIT with the standard train/dev/test split
  • To apply make prepare_timit dataset=PATH_TO_YOUR_TIMIT with the timit tools, that will create all the needed features (Mel filterbanks), for this step, spectral is a requirement.

Training a (deep) ABnet

Then you can:

  • Align words and extract their dynamic time warped paths with:
python align_words.py PATH_TO_TIMIT_TRAIN_FOLDER && python align_words.py PATH_TO_TIMIT_DEV_FOLDER && python align_words.py PATH_TO_TIMIT_TEST_FOLDER

See in this align_words.py for variants / size of words. This step needs DTW_Cython

  • Train the ABnet on this DTW aligned word patterns, e.g. with:
THEANO_FLAGS="device=gpu0" python run_exp_AB.py --dataset-path=dtw_words_train.joblib --dataset-name="timit_dtw" --prefix-output-fname="deep_cos_cos2" --iterator-type=dtw --nframes=7 --network-type=ab_net --debug-print=0 --debug-plot=0 --debug-time

ABX evaluation

If you want to evaluate it with ABX, you need to:

  • Create a folder with *.npz files containing timing and features, for that copy every filterbank numpy array and stack them as needed, e.g. with:
for name in `find . -name "*_fbanks.npy" | grep train`; do cp $name npz7_train/`echo $name | awk -F '/' '{print $4"_"$5}'`; done
python stack_fbanks.py npz7_train/*.npy
  • Use your trained ABnet to make the transformation of these filterbanks into the embedded features of the ABnet:
mkdir deep_cos_cos2 && python embed_fbanks.py deep_cos_cos2_timit_dtw_fbank7_ab_net_adadelta.pickle PATH_TO_npz7_train deep_cos_cos2
  • Make an ABX compatible *.features HDF5 file using: python npz2h5features.py deep_cos_cos2 deep_cos_cos2.features
  • You can now do an ABX evaluation e.g. with:
python ABX_repo/ABX_score.py deep_cos_cos2.features timit_ABX_train.phone.talker.task --ncore=8 --force
python ABX_repo/collpanda.py timit_ABX_train.phone.talker.deep_cos_cos2.score timit_ABX_train.phone.talker.task timit_ABX_train.phone.talker.deep_cos_cos2.output
bash ABX_repo/avg timit_ABX_train.phone.talker.deep_cos_cos2.output

About

ABNet is a "same/different"-based loss trained neural net.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.2%
  • Shell 0.8%