Skip to content

Commit

Permalink
Merge pull request #8 from Robinlovelace/si_calculate
Browse files Browse the repository at this point in the history
Create si_predict/si_calculate for #5

Former-commit-id: 56d2eb7
  • Loading branch information
Robinlovelace authored Apr 18, 2022
2 parents 15be2be + 37f0cf3 commit 1c2bfaa
Show file tree
Hide file tree
Showing 8 changed files with 174 additions and 25 deletions.
3 changes: 2 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
# Generated by roxygen2: do not edit by hand

export(si_model)
export(si_calculate)
export(si_predict)
export(si_to_od)
importFrom(rlang,.data)
39 changes: 30 additions & 9 deletions R/si_model.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#' Run a spatial interaction model
#' Calculate flow using a pre-existing function
#'
#' Executes a spatial interaction model based on an OD data frame
#' and user-specified function
Expand All @@ -7,7 +7,7 @@
#' [si_to_od()]
#' @param fun A function that calculates the interaction (e.g. the number of trips)
#' between each OD pair
#' @param var_p Use this argument to run a 'production constrained' SIM.
#' @param constraint_p Use this argument to run a 'production constrained' SIM.
#' Character string corresponding to column in the `od`
#' dataset that constrains the total 'interaction' (e.g. n. trips) for all OD pairs
#' such that the total for each zone of origin cannot go above this value.
Expand All @@ -17,22 +17,43 @@
#' @examples
#' od = si_to_od(si_zones, si_zones, max_dist = 4000)
#' fun_dd = function(od, d = "distance_euclidean", beta = 0.3) exp(-beta * od[[d]] / 1000)
#' od_dd = si_model(od, fun = fun_dd)
#' od_dd = si_calculate(od, fun = fun_dd)
#' plot(od$distance_euclidean, od_dd$res)
#' fun = function(od, O, n, d, beta) od[[O]] * od[[n]] * exp(-beta * od[[d]]/1000)
#' od_output = si_model(od, fun = fun, beta = 0.3, O = "origin_all",
#' od_output = si_calculate(od, fun = fun, beta = 0.3, O = "origin_all",
#' n = "destination_all", d = "distance_euclidean")
#' head(od_output)
#' plot(od$distance_euclidean, od_output$res)
#' od_pconst = si_model(od, fun = fun, beta = 0.3, O = "origin_all", n = "destination_all",
#' d = "distance_euclidean", var_p = origin_all)
#' od_pconst = si_calculate(od, fun = fun, beta = 0.3, O = "origin_all", n = "destination_all",
#' d = "distance_euclidean", constraint_p = origin_all)
#' plot(od_pconst$distance_euclidean, od_pconst$res)
#' plot(od_pconst["res"], logz = TRUE)
si_model = function(od, fun, var_p, ...) {
si_calculate = function(od, fun, constraint_p, ...) {
od$res = fun(od, ...)
if (!missing(var_p)) {
if (!missing(constraint_p)) {
od_grouped = dplyr::group_by(od, .data$O)
od_grouped = dplyr::mutate(od_grouped, res = .data$res / sum(.data$res) * mean( {{var_p}} ))
od_grouped = dplyr::mutate(od_grouped, res = .data$res / sum(.data$res) * mean( {{constraint_p}} ))
od = dplyr::ungroup(od_grouped)
}
od
}
#' Predict si model based on pre-trained model
#'
#' @param model A model object, e.g. from [lm()] or [glm()]
#' @inheritParams si_calculate
#' @seealso si_calculate
#' @export
#' @examples
#' od = si_to_od(si_zones, si_zones, max_dist = 4000)
#' m = lm(od$origin_all ~ od$origin_bicycle)
#' od_updated = si_predict(od, m)
si_predict = function(od, model, constraint_p) {
od$res = stats::predict(model, od)
if (!missing(constraint_p)) {
od_grouped = dplyr::group_by(od, .data$O)
od_grouped = dplyr::mutate(
od_grouped, res = .data$res / sum(.data$res) * mean( {{constraint_p}} )
)
od = dplyr::ungroup(od_grouped)
}
od
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ gravity_model = function(od, beta) {
exp(-beta * od[["distance_euclidean"]] / 1000)
}
# perform SIM
od_res = si_model(od, fun = gravity_model, beta = 0.3, var_p = origin_all)
od_res = si_calculate(od, fun = gravity_model, beta = 0.3, var_p = origin_all)
# visualize the results
plot(od_res$distance_euclidean, od_res$res)
```
Expand All @@ -62,7 +62,7 @@ approaches to be implemented. This flexibility is a key aspect of the
package, enabling small and easily modified functions to be implemented
and tested.

The output `si_model()` is a geographic object which can be plotted as a
The output `si_calculate)` is a geographic object which can be plotted as a
map:

``` r
Expand Down
4 changes: 2 additions & 2 deletions README.qmd
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ gravity_model = function(od, beta) {
exp(-beta * od[["distance_euclidean"]] / 1000)
}
# perform SIM
od_res = si_model(od, fun = gravity_model, beta = 0.3, var_p = origin_all)
od_res = si_calculate(od, fun = gravity_model, beta = 0.3, var_p = origin_all)
# visualize the results
plot(od_res$distance_euclidean, od_res$res)
```
Expand All @@ -60,7 +60,7 @@ As the example above shows, the package allows/encourages you to define and use
The resulting estimates of interaction, returned in the column `res` and plotted with distance in the graphic above, resulted from our choice of spatial interaction model inputs, allowing a wide range of alternative approaches to be implemented.
This flexibility is a key aspect of the package, enabling small and easily modified functions to be implemented and tested.

The output `si_model()` is a geographic object which can be plotted as a map:
The output `si_calculate)` is a geographic object which can be plotted as a map:

```{r map}
plot(od_res["res"], logz = TRUE)
Expand Down
97 changes: 97 additions & 0 deletions data-raw/si_model.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# Aim: test different configurations for si_model/predict
devtools::load_all()
remotes::install_cran()

# What we have currently:
od = si_to_od(si_zones, si_zones, max_dist = 4000)
fun_dd = function(od, d = "distance_euclidean", beta = 0.3) exp(-beta * od[[d]] / 1000)
od_dd = si_calculate(od, fun = fun_dd)
plot(od$distance_euclidean, od_dd$res)
fun = function(od, O, n, d, beta) od[[O]] * od[[n]] * exp(-beta * od[[d]]/1000)
od_output = si_calculate(od, fun = fun, beta = 0.3, O = "origin_all",
n = "destination_all", d = "distance_euclidean")
head(od_output)
plot(od$distance_euclidean, od_output$res)
od_pconst = si_calculate(od, fun = fun, beta = 0.3, O = "origin_all", n = "destination_all",
d = "distance_euclidean", var_p = origin_all)
plot(od_pconst$distance_euclidean, od_pconst$res)
plot(od_pconst["res"], logz = TRUE)
si_model = function(od, fun, var_p, ...) {
od$res = fun(od, ...)
if (!missing(var_p)) {
od_grouped = dplyr::group_by(od, .data$O)
od_grouped = dplyr::mutate(od_grouped, res = .data$res / sum(.data$res) * mean( {{var_p}} ))
od = dplyr::ungroup(od_grouped)
}
od
}

# Option 1
od = si_to_od(si_zones, si_zones, max_dist = 4000)
fun_dd = function(d, beta = 0.3) exp(-beta * d / 1000)
od_dd = si_calculate(od, fun = fun_dd, d = distance_euclidean)
plot(od$distance_euclidean, od_dd$res)
fun = function(od, O, n, d, beta) od[[O]] * od[[n]] * exp(-beta * od[[d]]/1000)
od_output = si_calculate(od, fun = fun, beta = 0.3, O = "origin_all",
n = "destination_all", d = "distance_euclidean")
head(od_output)
plot(od$distance_euclidean, od_output$res)
od_pconst = si_calculate(od, fun = fun, beta = 0.3, O = "origin_all", n = "destination_all",
d = "distance_euclidean", var_p = origin_all)
plot(od_pconst$distance_euclidean, od_pconst$res)
plot(od_pconst["res"], logz = TRUE)
si_model = function(od, fun, var_p, ...) {
browser()
res = fun(...)
od = dplyr::mutate(od, res = fun(...))
od$res = fun(od, ...)
if (!missing(var_p)) {
od_grouped = dplyr::group_by(od, .data$O)
od_grouped = dplyr::mutate(od_grouped, res = .data$res / sum(.data$res) * mean( {{var_p}} ))
od = dplyr::ungroup(od_grouped)
}
od
}


si_dd_exp = function(d, beta) {
exp(d * -beta)
}

si_dd_exp(d = od$distance_euclidean, beta = 0.2)
dplyr::mutate(od,
res = si_dd_exp(distance_euclidean, beta = 0.2)
)

si_dd_exp = function(d, beta = 0.1) {
exp({{d}} * -beta)
}

dplyr::mutate(od,
res = si_dd_exp(distance_euclidean, beta = 0.2)
)

si_model_tidy = function(od, fun, ...) {
dplyr::mutate(res = fun(dplyr::vars(...)))
}

si_model_tidy(od, si_dd_exp, beta = 0.1, d = distance_euclidean)


f = flow ~ exp(distance_euclidean * -b)
f = as.formula(y ~ exp(distance_euclidean * -b))
with(od, f)
si_model_standard = function(od, fun, formula, output = "flow") {
res = with(od, fun(...))
res
}
si_model_standard(od)

si_dd_exp = function(d, beta = 0.1) {
exp(d * -beta)
}


si_model_standard(od, si_dd_exp, beta = 0.2, d = "distance_euclidean")


18 changes: 9 additions & 9 deletions man/si_model.Rd → man/si_calculate.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

30 changes: 30 additions & 0 deletions man/si_predict.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 2 additions & 2 deletions vignettes/si.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -120,8 +120,8 @@ A simplistic SIM can be created just based on the distance between points:
si_power = function(od, beta) {
(od[["distance_euclidean"]] / 1000)^beta
}
od_model = si_model(od_sim, fun = si_power, beta = -0.8)
plot(od_model["res"], logz = TRUE)
od_calculate = si_calculate(od_sim, fun = si_power, beta = -0.8)
plot(od_calculate["res"], logz = TRUE)
```

This approach, ignoring all variables at the level of trip origins and destinations, results in flow estimates with no units.
Expand Down

0 comments on commit 1c2bfaa

Please sign in to comment.