A C++ implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano
This repository uses yolov5 to detect humnan heads and helmets which can run in Jetson Xavier nx and Jetson nano. In Jetson Xavier Nx, it can achieve 33 FPS.
You can see video play in BILIBILI, or YOUTUBE.
If you want to try to train your own model, you can see yolov5-helmet-detection-python. Follow the readme to get your own model.
- Jetson nano or Jetson Xavier nx
- Jetpack 4.5.1
- python3 with default(jetson nano or jetson xavier nx has default python3 with tensorrt 7.1.3.0 )
- tensorrt 7.1.3.0
- torch 1.8.0
- torchvision 0.9.0
- torch2trt 0.3.0
- onnx 1.4.1
- opencv-python 4.5.3.56
- protobuf 3.17.3
- scipy 1.5.4
if you have problem in this project, you can see this artical.
- Int8.
- yolov5-s
- yolov5-m
- Faster and use less memory.
Whole process time from read image to finish process (include every img preprocess and postprocess). And all results can get in Jetson Xavier nx. For python model and code, you can find them in this project
Backbone | before TensorRT | TensortRT(detection) | FPS(detection) |
---|---|---|---|
Yolov5s-640-float16 | 100ms | 60-70ms | 14 ~ 18 |
Yolov5m-640-float16 | 120ms | 70-75ms | 13 ~ 14 |
Yolov5s-640-int8 | 30-40ms | 25 ~ 33 | |
Yolov5m-640-int8 | 50-60ms | 16 ~ 20 |
git clone https://github.com/RichardoMrMu/yolov5-helmet-detection
cd yolov5-helmet-detection
mkdir build
cmake ..
make
if you meet some errors in cmake and make, please see this artical or see Attention.
You need is yolov5 model, for detection, generating from tensorrtx. You should generate the model the same way.
For yolov5 detection model, I choose yolov5s, and choose yolov5s.pt->yolov5s.wts->yolov5s.engine
Note that, used models can get from yolov5 and if you need to use your own model, you can follow the Run Your Custom Model
.
You can also see tensorrtx official readme
- Get yolov5 repository
Note that, here uses the official pertained model.And I use yolov5-5, v5.0. So if you train your own model, please be sure your yolov5 code is v5.0.
git clone -b v5.0 https://github.com/ultralytics/yolov5.git
cd yolov5
mkdir weights
cd weights
// download https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
wget https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
- Get tensorrtx.
git clone https://github.com/wang-xinyu/tensorrtx
- Get xxx.wst model
cp tensorrtx/gen_wts.py yolov5/
cd yolov5
python3 gen_wts.py -w ./weights/yolov5s.pt -o ./weights/yolov5s.wts
// a file 'yolov5s.wts' will be generated.
You can get yolov5s.wts model in yolov5/weights/
- Build tensorrtx/yolov5 and get tensorrt engine
cd tensorrtx/yolov5
// update CLASS_NUM in yololayer.h if your model is trained on custom dataset
mkdir build
cd build
cp {ultralytics}/yolov5/yolov5s.wts {tensorrtx}/yolov5/build
cmake ..
make
// yolov5s
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
// test your engine file
sudo ./yolov5 -d yolov5s.engine ../samples
Then you get the yolov5s.engine, and you can put yolov5s.engine
in My project. For example
cd {yolov5-helmet-detection}
mkdir resources
cp {tensorrtx}/yolov5/build/yolov5s.engine {yolov5-helmet-detection}/resources
After all 4 step, you can get the yolov5s.engine .
You may face some problems in getting yolov5s.engine, you can upload your issue in github or csdn artical.
Different versions of yolov5
Currently, tensorrt support yolov5 v1.0(yolov5s only), v2.0, v3.0, v3.1, v4.0 and v5.0.
- For yolov5 v5.0, download .pt from yolov5 release v5.0,
git clone -b v5.0 https://github.com/ultralytics/yolov5.git
andgit clone https://github.com/wang-xinyu/tensorrtx.git
, then follow how-to-run in current page. - For yolov5 v4.0, download .pt from yolov5 release v4.0,
git clone -b v4.0 https://github.com/ultralytics/yolov5.git
andgit clone -b yolov5-v4.0 https://github.com/wang-xinyu/tensorrtx.git
, then follow how-to-run in tensorrtx/yolov5-v4.0. - For yolov5 v3.1, download .pt from yolov5 release v3.1,
git clone -b v3.1 https://github.com/ultralytics/yolov5.git
andgit clone -b yolov5-v3.1 https://github.com/wang-xinyu/tensorrtx.git
, then follow how-to-run in tensorrtx/yolov5-v3.1. - For yolov5 v3.0, download .pt from yolov5 release v3.0,
git clone -b v3.0 https://github.com/ultralytics/yolov5.git
andgit clone -b yolov5-v3.0 https://github.com/wang-xinyu/tensorrtx.git
, then follow how-to-run in tensorrtx/yolov5-v3.0. - For yolov5 v2.0, download .pt from yolov5 release v2.0,
git clone -b v2.0 https://github.com/ultralytics/yolov5.git
andgit clone -b yolov5-v2.0 https://github.com/wang-xinyu/tensorrtx.git
, then follow how-to-run in tensorrtx/yolov5-v2.0. - For yolov5 v1.0, download .pt from yolov5 release v1.0,
git clone -b v1.0 https://github.com/ultralytics/yolov5.git
andgit clone -b yolov5-v1.0 https://github.com/wang-xinyu/tensorrtx.git
, then follow how-to-run in tensorrtx/yolov5-v1.0.
Config
- Choose the model s/m/l/x/s6/m6/l6/x6 from command line arguments.
- Input shape defined in yololayer.h
- Number of classes defined in yololayer.h, DO NOT FORGET TO ADAPT THIS, If using your own model
- INT8/FP16/FP32 can be selected by the macro in yolov5.cpp, INT8 need more steps, pls follow
How to Run
first and then go theINT8 Quantization
below - GPU id can be selected by the macro in yolov5.cpp
- NMS thresh in yolov5.cpp
- BBox confidence thresh in yolov5.cpp
- Batch size in yolov5.cpp
You may need train your own model and transfer your trained-model to tensorRT. So you can follow the following steps.
- Train Custom Model You can follow the official wiki to train your own model on your dataset. For example, I choose yolov5-s to train my model.
- Transfer Custom Model
Just like tensorRT official guideline.When your follow
Generate yolov5 model
to get yolov5 and tensorrt rep, next step is to transfer your pytorch model to tensorrt. Before this, you need to change yololayer.h file 20,21 and 22 line(CLASS_NUM,INPUT_H,INPUT_W) to your own parameters.
// before
static constexpr int CLASS_NUM = 80; // 20
static constexpr int INPUT_H = 640; // 21 yolov5's input height and width must be divisible by 32.
static constexpr int INPUT_W = 640; // 22
// after
// if your model is 2 classfication and image size is 416*416
static constexpr int CLASS_NUM = 2; // 20
static constexpr int INPUT_H = 416; // 21 yolov5's input height and width must be divisible by 32.
static constexpr int INPUT_W = 416; // 22
cd {tensorrtx}/yolov5/
// update CLASS_NUM in yololayer.h if your model is trained on custom dataset
mkdir build
cd build
cp {ultralytics}/yolov5/yolov5s.wts {tensorrtx}/yolov5/build
cmake ..
make
sudo ./yolov5 -s [.wts] [.engine] [s/m/l/x/s6/m6/l6/x6 or c/c6 gd gw] // serialize model to plan file
sudo ./yolov5 -d [.engine] [image folder] // deserialize and run inference, the images in [image folder] will be processed.
// For example yolov5s
sudo ./yolov5 -s yolov5s.wts yolov5s.engine s
sudo ./yolov5 -d yolov5s.engine ../samples
// For example Custom model with depth_multiple=0.17, width_multiple=0.25 in yolov5.yaml
sudo ./yolov5 -s yolov5_custom.wts yolov5.engine c 0.17 0.25
sudo ./yolov5 -d yolov5.engine ../samples
In this way, you can get your own tensorrt yolov5 model. Enjoy it!