Skip to content

Commit

Permalink
DOC: split vertex type enum explanation
Browse files Browse the repository at this point in the history
  • Loading branch information
redeboer committed May 13, 2024
1 parent 33cd8e0 commit 47d13cb
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 14 deletions.
1 change: 1 addition & 0 deletions .cspell/project.txt
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
Mikhasenko
Misha
multline
Semileptonic
37 changes: 23 additions & 14 deletions docs/description.md
Original file line number Diff line number Diff line change
Expand Up @@ -175,20 +175,29 @@ Vertices define the nodes in the decay graphs, where one particle transits into

- **`type`:** Specifies how the helicity recoupling factor `H_{l1,l2}` is computed.
Three types are defined: `ls`, `parity`, and `helicity`.
These reflect different ways of relating combinations of the helicity indices to a real-valued factor, the recoupling coefficient.

$$
\begin{align}
H^\text{helicity}(\lambda_a,\lambda_b|\lambda_a^0,\lambda_b^0) &= \delta_{\lambda_a,\lambda_a^0}\delta_{\lambda_b,\lambda_b^0}\,, \\
H^\text{parity}(\lambda_a,\lambda_b|\lambda_a^0,\lambda_b^0, f) &=
\delta_{\lambda_a,\lambda_a^0}\delta_{\lambda_b,\lambda_b^0} + f \delta_{\lambda_a,-\lambda_a^0}\delta_{\lambda_b,-\lambda_b^0}\,, \\
H^\text{ls}(\lambda_a,\lambda_b|l,s,j_a,j_b,j) &= \sqrt{\frac{2l+1}{2j+1}}
\left\langle j_a,\lambda_a; j_b,-\lambda_b|s,\lambda_a-\lambda_b\right\rangle
\left\langle l,0; s,\lambda_a-\lambda_b|j,\lambda_a-\lambda_b\right\rangle\,.
\end{align}
$$

The `helicity` indicated no recoupling, the factor is $1$ for a pair of selected helicities ($\lambda_a^0$ and $\lambda_b^0$) and zero for other combinations. The `ParityRecoupling` is controlled by the controlled by the `parity factor`, $f$, and gives non-zero value for two combination of the helicity pair, the selected one and the opposite. Finally, the `RecouplingLS` computes the value of the recoupling functions from Clebsch–Gordan coefficients. For spin-half particles, this recoupling is equivalent to `ParityRecoupling`, with $f = (-1)^l$.
These reflect different ways of relating combinations of the helicity indices to a real-valued "recoupling coefficient".

- `helicity` indicates no recoupling: the factor is $1$ for a pair of selected helicities ($\lambda_a^0$ and $\lambda_b^0$) and zero for other combinations.

$$
H^\text{helicity}(\lambda_a,\lambda_b|\lambda_a^0,\lambda_b^0) = \delta_{\lambda_a,\lambda_a^0}\delta_{\lambda_b,\lambda_b^0}
$$

- `parity` is controlled by the controlled by the `parity factor`, $f$, and gives a non-zero value for two combination of the helicity pair.
$$
H^\text{parity}(\lambda_a,\lambda_b|\lambda_a^0,\lambda_b^0, f) =
\delta_{\lambda_a,\lambda_a^0}\delta_{\lambda_b,\lambda_b^0} + f \delta_{\lambda_a,-\lambda_a^0}\delta_{\lambda_b,-\lambda_b^0}
$$
- `ls` computes the value of the recoupling functions from Clebsch–Gordan coefficients.
$$
\begin{multline}
H^\text{ls}(\lambda_a,\lambda_b|l,s,j_a,j_b,j) = \\
\sqrt{\frac{2l+1}{2j+1}}
\left\langle j_a,\lambda_a; j_b,-\lambda_b|s,\lambda_a-\lambda_b\right\rangle
\left\langle l,0; s,\lambda_a-\lambda_b|j,\lambda_a-\lambda_b\right\rangle
\end{multline}
$$
For spin-half particles, this recoupling is equivalent to the `parity` recoupling, with $f = (-1)^l$.

### Propagators

Expand Down

0 comments on commit 47d13cb

Please sign in to comment.