Skip to content

[ROCm] Enable gemm fusion autotuner. #103

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: rocm-jaxlib-v0.4.31-qa
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 11 additions & 0 deletions third_party/llvm/capture.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
--- a/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
+++ a/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
@@ -119,7 +119,7 @@

std::optional<SmallVector<int64_t>>
getConstantIntValues(ArrayRef<OpFoldResult> ofrs) {
- bool failed = false;
+ bool failed = false;__asm__("":"+r"(failed));
SmallVector<int64_t> res = llvm::map_to_vector(ofrs, [&](OpFoldResult ofr) {
auto cv = getConstantIntValue(ofr);
if (!cv.has_value())
1 change: 1 addition & 0 deletions third_party/llvm/workspace.bzl
Original file line number Diff line number Diff line change
@@ -23,6 +23,7 @@ def repo(name):
"//third_party/llvm:toolchains.patch",
"//third_party/llvm:zstd.patch",
"//third_party/llvm:rocdl_shuffle_down.patch",
"//third_party/llvm:capture.patch",
],
link_files = {"//third_party/llvm:run_lit.sh": "mlir/run_lit.sh"},
)
11 changes: 11 additions & 0 deletions third_party/tsl/third_party/llvm/capture.patch
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
--- a/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
+++ a/mlir/lib/Dialect/Utils/StaticValueUtils.cpp
@@ -119,7 +119,7 @@

std::optional<SmallVector<int64_t>>
getConstantIntValues(ArrayRef<OpFoldResult> ofrs) {
- bool failed = false;
+ bool failed = false;__asm__("":"+r"(failed));
SmallVector<int64_t> res = llvm::map_to_vector(ofrs, [&](OpFoldResult ofr) {
auto cv = getConstantIntValue(ofr);
if (!cv.has_value())
1 change: 1 addition & 0 deletions third_party/tsl/third_party/llvm/workspace.bzl
Original file line number Diff line number Diff line change
@@ -23,6 +23,7 @@ def repo(name):
"//third_party/llvm:toolchains.patch",
"//third_party/llvm:zstd.patch",
"//third_party/llvm:rocdl_shuffle_down.patch",
"//third_party/llvm:capture.patch",
],
link_files = {"//third_party/llvm:run_lit.sh": "mlir/run_lit.sh"},
)
91 changes: 83 additions & 8 deletions xla/service/gpu/BUILD
Original file line number Diff line number Diff line change
@@ -484,12 +484,89 @@ cc_library(
],
)

cc_library(
name = "gemm_fusion_autotuner_cuda",
srcs = [
"gemm_fusion_autotuner.h",
"gemm_fusion_autotuner_cuda.cc",
],
tags = [
"cuda-only",
"gpu",
],
deps = [
":autotuner_compile_util",
":autotuner_util",
"//xla:autotuning_proto_cc",
"//xla:xla_proto_cc",
"//xla/hlo/ir:hlo",
"//xla/service:hlo_pass",
"//xla/pjrt/distributed:key_value_store_interface",
"//xla/service:algorithm_util",
"//xla/service:executable",
"//xla/service:shaped_buffer",
"//xla/service/gpu:ir_emission_utils",
"//xla/service/gpu:matmul_utils",
"//xla/service/gpu:stream_executor_util",
"//xla/service/gpu/transforms:cudnn_fusion_compiler",
"//xla/stream_executor:device_description",
"//xla/stream_executor:semantic_version",
"@com_google_absl//absl/algorithm:container",
"@com_google_absl//absl/container:flat_hash_map",
"@com_google_absl//absl/container:flat_hash_set",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@com_google_absl//absl/strings:string_view",
"@com_google_absl//absl/types:span",
"@local_config_cuda//cuda:cuda_headers",
"@tsl//tsl/platform:env",
],
)

cc_library(
name = "gemm_fusion_autotuner_rocm",
srcs = [
"gemm_fusion_autotuner.h",
"gemm_fusion_autotuner_rocm.cc",
],
tags = [
"gpu",
"rocm-only",
],
deps = [
":autotuner_compile_util",
":autotuner_util",
"//xla:autotuning_proto_cc",
"//xla:xla_proto_cc",
"//xla/hlo/ir:hlo",
"//xla/service:hlo_pass",
"//xla/pjrt/distributed:key_value_store_interface",
"//xla/service:executable",
"//xla/service:shaped_buffer",
"//xla/service/gpu:matmul_utils",
"//xla/stream_executor:device_description",
#"//xla/stream_executor:semantic_version",
"//xla/stream_executor/rocm:rocblas_plugin",
"@com_google_absl//absl/container:flat_hash_map",
"@com_google_absl//absl/container:flat_hash_set",
"@com_google_absl//absl/status",
"@com_google_absl//absl/status:statusor",
"@com_google_absl//absl/strings:string_view",
"@com_google_absl//absl/types:span",
"@local_config_rocm//rocm:rocm_headers",
"@tsl//tsl/platform:env",
],
)

cc_library(
name = "gemm_fusion_autotuner",
srcs = if_cuda_is_configured(["gemm_fusion_autotuner.cc"]),
hdrs = if_cuda_is_configured(["gemm_fusion_autotuner.h"]),
srcs = ["gemm_fusion_autotuner.cc"],
hdrs = ["gemm_fusion_autotuner.h"],
tags = ["gpu"],
local_defines = if_cuda_is_configured(["GOOGLE_CUDA=1"]),
deps = if_cuda_is_configured([
deps = if_cuda_is_configured([":gemm_fusion_autotuner_cuda"]) + if_rocm_is_configured([
":gemm_fusion_autotuner_rocm",
]) + [
":autotuner_compile_util",
":autotuner_util",
":backend_configs_cc",
@@ -552,15 +629,12 @@ cc_library(
"//xla/service/gpu/model:gpu_hlo_cost_analysis",
"//xla/stream_executor:stream_executor_memory_allocator",
"@tsl//tsl/platform:path",
]),
],
)

xla_test(
name = "gemm_fusion_autotuner_test",
srcs = if_cuda_is_configured(["gemm_fusion_autotuner_test.cc"]),
backend_tags = {"gpu": [
"requires-gpu-sm80",
]},
srcs = if_gpu_is_configured(["gemm_fusion_autotuner_test.cc"]),
backends = [
"gpu",
],
@@ -3803,6 +3877,7 @@ cc_library(
":cudnn_fused_conv_rewriter",
":cusolver_rewriter",
":gemm_algorithm_picker",
":gemm_fusion_autotuner",
":gpu_algebraic_simplifier",
":gpu_compiler",
":gpu_conv_padding_legalization",
11 changes: 11 additions & 0 deletions xla/service/gpu/amdgpu_compiler.cc
Original file line number Diff line number Diff line change
@@ -35,6 +35,8 @@ limitations under the License.
#include "xla/service/gpu/autotuner_util.h"
#include "xla/service/gpu/conv_algorithm_picker.h"
#include "xla/service/gpu/cublas_pad_for_gemms.h"
#include "xla/service/gpu/gemm_algorithm_picker.h"
#include "xla/service/gpu/gemm_fusion_autotuner.h"
#include "xla/service/gpu/cublas_padding_requirements.h"
#include "xla/service/gpu/cudnn_fused_conv_rewriter.h"
#include "xla/service/gpu/cusolver_rewriter.h"
@@ -277,5 +279,14 @@ AMDGPUCompiler::CompileTargetBinary(const HloModuleConfig& module_config,
return BackendCompileResult{"", std::move(hsaco)};
}

absl::Status AMDGPUCompiler::AddGemmFusionAutotuningPasses(
HloPassPipeline* pipeline, HloModule* hlo_module,
AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool,
const MultiProcessKeyValueStore& key_value_store) {
pipeline->AddPass<GemmFusionAutotuner>(autotune_config, GetToolkitVersion(),
thread_pool, key_value_store);
return absl::OkStatus();
}

} // namespace gpu
} // namespace xla
5 changes: 5 additions & 0 deletions xla/service/gpu/amdgpu_compiler.h
Original file line number Diff line number Diff line change
@@ -66,6 +66,11 @@ class AMDGPUCompiler : public GpuCompiler {
se::GpuComputeCapability gpu_version, bool relocatable,
const HloModule* debug_module, const CompileOptions& options) override;

absl::Status AddGemmFusionAutotuningPasses(
HloPassPipeline* pipeline, HloModule* hlo_module,
AutotuneConfig& autotune_config, tsl::thread::ThreadPool* thread_pool,
const MultiProcessKeyValueStore& key_value_store) override;

private:
AMDGPUCompiler(const AMDGPUCompiler&) = delete;
AMDGPUCompiler& operator=(const AMDGPUCompiler&) = delete;
127 changes: 31 additions & 96 deletions xla/service/gpu/gemm_fusion_autotuner.cc
Original file line number Diff line number Diff line change
@@ -40,7 +40,7 @@ limitations under the License.
#include "absl/synchronization/mutex.h"
#include "absl/time/time.h"
#include "absl/types/span.h"
#include "third_party/gpus/cuda/include/cublas_v2.h"
#include "xla/autotune_results.pb.h"
#include "xla/autotuning.pb.h"
#include "xla/hlo/ir/dfs_hlo_visitor_with_default.h"
#include "xla/hlo/ir/hlo_casting_utils.h"
@@ -61,7 +61,6 @@ limitations under the License.
#include "xla/service/gpu/autotuner_util.h"
#include "xla/service/gpu/backend_configs.pb.h"
#include "xla/service/gpu/buffer_comparator.h"
#include "xla/service/gpu/cudnn_fusion_compiler.h"
#include "xla/service/gpu/fusion_wrapper.h"
#include "xla/service/gpu/gemm_rewriter.h"
#include "xla/service/gpu/gpu_float_support.h"
@@ -438,29 +437,11 @@ absl::StatusOr<std::unique_ptr<HloModule>> CuDnnFusionExtractor(
return module;
}

bool IsFusionKind(const HloInstruction& hlo, absl::string_view kind) {
auto gpu_config = hlo.backend_config<GpuBackendConfig>();
if (!gpu_config.ok()) {
return false;
}
return gpu_config->fusion_backend_config().kind() == kind;
}

int GetCuDnnPlanCount(const HloInstruction& hlo,
const AutotuneConfig& autotune_config) {
if (auto gpu_config = hlo.backend_config<GpuBackendConfig>();
!gpu_config.ok() ||
gpu_config->fusion_backend_config().has_cudnn_fusion_config()) {
return {};
}
return CuDnnFusionCompiler::GetAvailablePlanCount(
*autotune_config.GetExecutor(), *DynCast<HloFusionInstruction>(&hlo));
}

AutotuneResult FromConfig(const Config& config) {
AutotuneResult res;
if (std::holds_alternative<GemmFusionAutotunerImpl::CuBlasConfig>(config)) {
res.mutable_gemm()->set_algorithm(CUBLAS_GEMM_DEFAULT);
res.mutable_gemm()->set_algorithm(
GemmFusionAutotunerImpl::BLAS_GEMM_DEFAULT);
} else if (std::holds_alternative<GemmFusionAutotunerImpl::CuDnnConfig>(
config)) {
res.mutable_algorithm()->set_algo_id(
@@ -550,6 +531,15 @@ std::string Serialize(const Config& config) {

} // anonymous namespace

bool GemmFusionAutotunerImpl::IsFusionKind(const HloInstruction& hlo,
absl::string_view kind) {
auto gpu_config = hlo.backend_config<GpuBackendConfig>();
if (!gpu_config.ok()) {
return false;
}
return gpu_config->fusion_backend_config().kind() == kind;
}

// Methods required for sorting the configs.
bool GemmFusionAutotunerImpl::CuBlasConfig::operator<(
const CuBlasConfig& other) const {
@@ -584,30 +574,17 @@ absl::StatusOr<std::vector<Config>> GemmFusionAutotunerImpl::GenerateConfigs(
Cast<HloDotInstruction>(hlo_query::GetFirstInstructionWithOpcode(
*fusion.called_computations().at(0), HloOpcode::kDot));

// Add cuBLAS reference config, if available.
std::vector<Config> configs;
if (algorithm_util::IsSupportedByCublasOrCublasLt(
dot->precision_config().algorithm()) &&
!dot->sparse_operands() && IsAutotuningEnabled()) {
configs.push_back(CuBlasConfig{});
}

// Add cuDNN plans, if available.
bool is_hopper =
!config_.IsDeviceless() && GetComputeCapability().IsAtLeastHopper();
bool is_cudnn_enabled =
debug_options_.xla_gpu_cudnn_gemm_fusion_level() > 0 && is_hopper &&
GetDnnVersionInfoOrDefault(config_.GetExecutor()).major_version() >= 9;
if ((IsFusionKind(fusion, kCuDnnFusionKind) && IsAutotuningEnabled()) ||
(IsFusionKind(fusion, kTritonGemmFusionKind) && is_cudnn_enabled &&
algorithm_util::IsSupportedByCudnn(
dot->precision_config().algorithm()) &&
!dot->sparse_operands() && IsAutotuningEnabled())) {
const int plan_count = GetCuDnnPlanCount(fusion, config_);
for (int plan_id = 0; plan_id < plan_count; ++plan_id) {
configs.push_back(CuDnnConfig{plan_id});
// Add cuBLAS reference config, if available.
std::vector<Config> configs;
if (algorithm_util::IsSupportedByCublasOrCublasLt(
dot->precision_config().algorithm()) &&
!dot->sparse_operands() && IsAutotuningEnabled()) {
configs.push_back(CuBlasConfig{});
}
}

// Add lib (e.g. cuDNN) plans, if available.
if (AddLibConfigs(fusion, dot, configs)) return configs;

if (IsFusionKind(fusion, kCuDnnFusionKind)) {
if (!IsAutotuningEnabled()) {
configs.push_back(CuDnnConfig{-1});
@@ -675,8 +652,6 @@ GemmFusionAutotunerImpl::GenerateTritonConfigs(const HloDotInstruction& dot) {

// Triton configurations are adjusted and deduplicated.
absl::flat_hash_set<TritonGemmConfig> added;
bool is_hopper =
!config_.IsDeviceless() && GetComputeCapability().IsAtLeastHopper();
for (TritonGemmConfig& config : triton_configs) {
config.block_m = std::min(config.block_m, limits.block_m);
config.block_n = std::min(config.block_n, limits.block_n);
@@ -699,10 +674,8 @@ GemmFusionAutotunerImpl::GenerateTritonConfigs(const HloDotInstruction& dot) {
// Sparse meta should have at least one element per thread.
// Note: only 2:4 structured sparsity is currently supported.
if (dot.sparse_operands()) {
if (is_hopper) {
config.block_m = std::max(config.block_m, 64);
config.num_warps = std::max(config.num_warps, 4);
}
config.block_m = std::max(config.block_m, 64);
config.num_warps = std::max(config.num_warps, 4);
config.block_k = std::max(
config.block_k,
2 * std::max(kMinTileSize, kLdmatrixGranularity / minBitWidth));
@@ -972,15 +945,15 @@ absl::StatusOr<std::vector<AutotuneResult>> GemmFusionAutotunerImpl::Profile(
std::vector<TritonGemmConfig>
GemmFusionAutotunerImpl::GetExhaustiveTritonConfigs() const {
std::vector<TritonGemmConfig> configs;
se::CudaComputeCapability cc = GetComputeCapability();
bool tune_ctas =
debug_options_.xla_gpu_enable_triton_hopper() && cc.IsAtLeastHopper();
se::GpuComputeCapability gcc = GetComputeCapability();
bool tune_ctas = false;

if (!isRocm()) {
auto cc = std::get<se::CudaComputeCapability>(gcc);
debug_options_.xla_gpu_enable_triton_hopper() && cc.IsAtLeastHopper();
}

for (int num_stages : kNumStages) {
// Volta doesn't support num_stages > 2.
if (!cc.IsAtLeastAmpere() && num_stages > 2) {
break;
}
for (int tile_m : kBlockSizes) {
for (int tile_n : kBlockSizes) {
for (int tile_k : kBlockSizes) {
@@ -1019,44 +992,6 @@ GemmFusionAutotunerImpl::GetExhaustiveTritonConfigs() const {
return configs;
}

std::vector<TritonGemmConfig> GemmFusionAutotunerImpl::GetDefaultTritonConfigs()
const {
using Config = TritonGemmConfig;
std::vector<Config> configs = {
Config(32, 32, 256, 1, 1, 4), Config(64, 32, 32, 16, 1, 4),
Config(32, 64, 64, 4, 1, 4), Config(128, 128, 64, 4, 1, 4),
Config(16, 16, 256, 1, 1, 4), Config(16, 128, 32, 16, 1, 4),
Config(16, 64, 128, 1, 1, 4), Config(16, 128, 32, 8, 1, 4),
Config(16, 16, 512, 1, 1, 4), Config(32, 16, 512, 1, 1, 4),
Config(64, 32, 64, 1, 2, 8)};
if (GetComputeCapability().IsAtLeastAmpere()) {
absl::c_copy(
std::vector<Config>{
Config(128, 256, 32, 1, 3, 8), Config(256, 128, 32, 1, 3, 8),
Config(256, 64, 32, 1, 4, 4), Config(64, 256, 32, 1, 4, 4),
Config(128, 64, 32, 1, 4, 4), Config(64, 128, 32, 1, 4, 4),
Config(256, 128, 128, 1, 3, 8), Config(256, 64, 128, 1, 4, 4),
Config(64, 256, 128, 1, 4, 4), Config(128, 128, 128, 1, 4, 4),
Config(128, 64, 64, 1, 4, 4), Config(64, 128, 64, 1, 4, 4),
Config(128, 32, 64, 1, 4, 4), Config(64, 32, 64, 1, 4, 4),
Config(32, 128, 32, 1, 4, 4), Config(128, 128, 32, 1, 4, 4),
Config(16, 16, 256, 1, 3, 4), Config(128, 128, 64, 2, 1, 8),
Config(64, 64, 64, 1, 2, 4), Config(16, 64, 256, 8, 1, 4),
Config(256, 256, 128, 1, 3, 8)},
std::back_inserter(configs));
}
if (GetComputeCapability().IsAtLeastHopper()) {
absl::c_copy(
std::vector<Config>{
Config(16, 32, 32, 8, 1, 2),
Config(16, 64, 128, 8, 1, 4),
Config(16, 64, 128, 16, 3, 4),
},
std::back_inserter(configs));
}
return configs;
}

absl::Status DumpAutotuningLogs(const DebugOptions& debug_opts,
const AutotuningLogs& autotuning_logs) {
if (absl::string_view file_path = debug_opts.xla_gpu_dump_autotune_logs_to();
Loading