forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
CoreML: Add ML Program ConvTranspose (microsoft#21416)
### Description <!-- Describe your changes. --> Add ML Program ConvTranspose - some limitations to simplify the implementation for now - some limitations due to flaky CoreML output Added support for non-contiguous MLMultiArray output as we see that with some unit tests when the CPU-only flag is not set (e.g. innermost dim has min size of 16 but test output only has 8 values). - support only one non-contiguous dim to keep it simple - manually tested as we don't have a setup that can test objective-c code - test code is in model.mm and can be enabled via ifdef if we need to validate any future changes ### Motivation and Context <!-- - Why is this change required? What problem does it solve? - If it fixes an open issue, please link to the issue here. --> Address operator gaps in high priority model. --------- Co-authored-by: Edward Chen <[email protected]>
- Loading branch information
1 parent
6794dfd
commit 2580d93
Showing
15 changed files
with
511 additions
and
165 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
218 changes: 218 additions & 0 deletions
218
onnxruntime/core/providers/coreml/builders/impl/convtranspose_op_builder.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
// Copyright (c) Microsoft Corporation. All rights reserved. | ||
// Licensed under the MIT License. | ||
|
||
#include "core/providers/common.h" | ||
#include "core/providers/coreml/builders/helper.h" | ||
#include "core/providers/coreml/builders/impl/base_op_builder.h" | ||
#include "core/providers/coreml/builders/impl/builder_utils.h" | ||
#include "core/providers/coreml/builders/model_builder.h" | ||
#include "core/providers/coreml/builders/op_builder_factory.h" | ||
#include "core/providers/coreml/shape_utils.h" | ||
#include "core/providers/shared/utils/utils.h" | ||
|
||
using namespace CoreML::Specification; | ||
|
||
namespace onnxruntime { | ||
namespace coreml { | ||
|
||
class ConvTransposeOpBuilder : public BaseOpBuilder { | ||
Status AddToModelBuilderImpl(ModelBuilder& model_builder, const Node& node, | ||
const logging::Logger& logger) const override; | ||
|
||
bool IsOpSupportedImpl(const Node& /* node */, const OpBuilderInputParams& /* input_params */, | ||
const logging::Logger& /* logger */) const override; | ||
|
||
bool SupportsMLProgram() const override { return true; } | ||
}; | ||
|
||
Status ConvTransposeOpBuilder::AddToModelBuilderImpl([[maybe_unused]] ModelBuilder& model_builder, | ||
[[maybe_unused]] const Node& node, | ||
const logging::Logger& /*logger*/) const { | ||
#if defined(COREML_ENABLE_MLPROGRAM) | ||
using namespace CoreML::Specification::MILSpec; // NOLINT | ||
const auto input_defs = node.InputDefs(); | ||
const auto output_defs = node.OutputDefs(); | ||
const auto& input_name = input_defs[0]->Name(); | ||
|
||
NodeAttrHelper helper(node); | ||
|
||
// https://apple.github.io/coremltools/source/coremltools.converters.mil.mil.ops.defs.html#coremltools.converters.mil.mil.ops.defs.iOS15.conv.conv_transpose | ||
std::unique_ptr<Operation> op = model_builder.CreateOperation(node, "conv_transpose"); | ||
const auto& op_type = op->type(); | ||
|
||
AddOperationInput(*op, "x", input_name); | ||
AddOperationInput(*op, "weight", input_defs[1]->Name()); | ||
|
||
if (input_defs.size() > 2) { | ||
AddOperationInput(*op, "bias", input_defs[2]->Name()); | ||
} | ||
|
||
// we know this input has a valid shape due to the check in IsOpSupportedImpl. ignore N and C dims. | ||
const auto num_spatial_dims = input_defs[1]->Shape()->dim_size() - 2; | ||
|
||
// Spec says strides/dilations/pads are optional but reality is they're required for at least the iOS15 target | ||
// which is CoreML5. Due to that we just add everything for simplicity. | ||
const auto strides = helper.Get("strides", std::vector<int64_t>(num_spatial_dims, 1)); | ||
const auto dilations = helper.Get("dilations", std::vector<int64_t>(num_spatial_dims, 1)); | ||
|
||
AddOperationInput(*op, "strides", model_builder.AddConstant(op_type, "strides", strides)); | ||
AddOperationInput(*op, "dilations", model_builder.AddConstant(op_type, "dilations", dilations)); | ||
|
||
const std::optional<int64_t> groups = helper.GetInt64("group"); | ||
if (groups) { | ||
AddOperationInput(*op, "groups", model_builder.AddScalarConstant(op_type, "groups", *groups)); | ||
} | ||
|
||
// if we can enable output_shape, this code works. see IsOpSupportedImpl for the reason it's disabled. | ||
// const auto output_shape = helper.GetInt64s("output_shape"); | ||
// if (output_shape) { | ||
// AddOperationInput(*op, "output_shape", model_builder.AddConstant(op_type, "output_shape", *output_shape)); | ||
// // these are required despite the spec saying otherwise | ||
// AddOperationInput(*op, "pad_type", model_builder.AddScalarConstant(op_type, "pad_type", std::string("valid"))); | ||
// std::vector<int64_t> pads(num_spatial_dims * 2, 0); | ||
// AddOperationInput(*op, "pad", model_builder.AddConstant(op_type, "pad", pads)); | ||
//} else { | ||
// AddPadTypeAndPads(*op, model_builder, op_type, helper, num_spatial_dims); | ||
//} | ||
|
||
AddPadTypeAndPads(*op, model_builder, op_type, helper, num_spatial_dims); | ||
|
||
AddOperationOutput(*op, *output_defs[0]); | ||
|
||
model_builder.AddOperation(std::move(op)); | ||
#endif // defined(COREML_ENABLE_MLPROGRAM) | ||
|
||
return Status::OK(); | ||
} | ||
|
||
bool ConvTransposeOpBuilder::IsOpSupportedImpl(const Node& node, const OpBuilderInputParams& input_params, | ||
const logging::Logger& logger) const { | ||
if (!input_params.create_mlprogram) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: ML Program required"; | ||
return false; | ||
} | ||
|
||
// ML Program | ||
// - const weight until CoreML7 (iOS17) | ||
// - require constant for now as non-const would be unusual and we rely on the shape of W to be known to validate | ||
// the kernel_shape can be used | ||
// - const bias | ||
// - const pad | ||
// - if auto_pad is same_upper or same_lower the output[i] - (input[i] * strides[i]) must be divisible by 2 | ||
// as the pads must be equally split as there's no upper/lower option in CoreML | ||
// - punting on supporting this for now | ||
// - must be symmetric for CoreML to do the right thing | ||
// - const strides/dilations/groups | ||
// - output_shape CoreML output is inconsistent so disabled for now | ||
// | ||
// NOTE: need to test with/without the COREML_FLAG_USE_CPU_ONLY flag being set to get an idea of how flaky the CoreML | ||
// behavior is. | ||
// Update /onnxruntime/test/util/default_providers.cc:DefaultCoreMLExecutionProvider to do so | ||
|
||
const auto& input_defs = node.InputDefs(); | ||
|
||
std::vector<int64_t> input_shape; | ||
if (!GetShape(*input_defs[0], input_shape, logger)) { | ||
// requires the rank at least to be known | ||
LOGS(logger, VERBOSE) << "ConvTranspose: failed to get input shape"; | ||
return false; | ||
} | ||
|
||
// for simplicity require weight to be constant | ||
const auto& weight_arg = *input_defs[1]; | ||
const auto& weight_name = input_defs[1]->Name(); | ||
const auto* weight = input_params.graph_viewer.GetConstantInitializer(weight_name); | ||
if (!weight) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: weight must be constant"; | ||
return false; | ||
} | ||
|
||
if (input_defs.size() > 2 && !input_params.graph_viewer.GetConstantInitializer(input_defs[2]->Name())) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: bias must be constant"; | ||
return false; | ||
} | ||
|
||
std::vector<int64_t> weight_shape; | ||
if (!GetShape(weight_arg, weight_shape, logger)) { | ||
// impossible as it's a constant initializer | ||
LOGS(logger, VERBOSE) << "ConvTranspose: failed to get weight shape"; | ||
return false; | ||
} | ||
|
||
int64_t num_spatial_dims = narrow<int64_t>(weight_shape.size()) - 2; | ||
|
||
NodeAttrHelper helper(node); | ||
|
||
// Punt on SAME_UPPER/SAME_LOWER for now. | ||
// We could infer that 'same' -> 'same_upper' based on the CoreML conv spec having 'same' and 'same_lower' but | ||
// need to validate that assertion. | ||
// Additionally, if the pads size is equal, there's no difference between same_upper and same_lower. | ||
// To do that we'd need the 'output_shape' attribute to check against. | ||
// Can add this handling if/when needed. | ||
auto autopad = StringToAutoPadType(helper.Get("auto_pad", "NOTSET")); | ||
if (autopad == AutoPadType::SAME_LOWER || autopad == AutoPadType::SAME_UPPER) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: support for SAME_LOWER/SAME_UPPER is not implemented yet"; | ||
return false; | ||
} else if (autopad == AutoPadType::NOTSET) { | ||
// CoreML output is inconsistent between CPU_ONLY and ALL if the pads aren't all the same value. | ||
// CPU matches the expected output, but other devices don't seem to (at least on macOS). | ||
auto onnx_pads = *helper.GetInt64s("pads"); // 'pads' are required if auto_pad is NOTSET | ||
const auto pad_value = onnx_pads[0]; | ||
if (!std::all_of(onnx_pads.begin() + 1, onnx_pads.end(), | ||
[pad_value](auto value) { return value == pad_value; })) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: all pad values must be the same for CoreML to return " | ||
"consistent results"; | ||
return false; | ||
} | ||
} | ||
|
||
// there's no input to specify a kernel shape in CoreML. | ||
// it's OK if a specified kernel_shape matches kH and kW dims of the weight input. | ||
auto kernel_shape = helper.GetInt64s("kernel_shape"); | ||
if (kernel_shape) { | ||
bool valid = true; | ||
|
||
if (static_cast<int64_t>(kernel_shape->size()) == num_spatial_dims) { | ||
for (int i = 0; i < num_spatial_dims; ++i) { | ||
// check the specified kernel shape matches the weight shape. skip the initial N and C dims in the latter. | ||
if ((*kernel_shape)[i] != weight_shape[i + 2]) { | ||
valid = false; | ||
break; | ||
} | ||
} | ||
} else { | ||
valid = false; | ||
} | ||
|
||
if (!valid) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: kernel_shape attribute does not match the weight shape"; | ||
return false; | ||
} | ||
} | ||
|
||
// In theory this can be supported, but running with COREML_FLAG_USE_CPU_ONLY produces output that doesn't match | ||
// ONNX. Running without that flag produces the expected output. Madness... | ||
auto output_shape = helper.GetInt64s("output_shape"); | ||
if (output_shape) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: output_shape is not supported as the CoreML output is inconsistent"; | ||
return false; | ||
} | ||
|
||
// output_padding, if specified, must be the default value of all zeros as there's no equivalent in CoreML. | ||
auto output_padding = helper.GetInt64s("output_padding"); | ||
if (output_padding && | ||
std::any_of(output_padding->begin(), output_padding->end(), [](auto value) { return value != 0; })) { | ||
LOGS(logger, VERBOSE) << "ConvTranspose: output_padding is not supported"; | ||
return false; | ||
} | ||
|
||
return true; | ||
} | ||
|
||
void CreateConvTransposeOpBuilder(const std::string& op_type, OpBuilderRegistrations& op_registrations) { | ||
op_registrations.builders.push_back(std::make_unique<ConvTransposeOpBuilder>()); | ||
op_registrations.op_builder_map.emplace(op_type, op_registrations.builders.back().get()); | ||
} | ||
|
||
} // namespace coreml | ||
} // namespace onnxruntime |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.