Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MultiHeadAttention #3650

Merged
merged 3 commits into from
Jan 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
295 changes: 295 additions & 0 deletions src/onnx/parse_multi_head_attention.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,295 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2024 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/errors.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/ranges.hpp>
#include <string>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {

enum class qkv_fomat_t
{
q_k_v = 0,
q_k_v_cross = 1,
kv_packed = 2,
qkv_packed = 3
};

struct multi_head_attention_parameters
{
int64_t batch_size;
int64_t q_sequence_length;
int64_t kv_sequence_length;
int64_t hidden_size;
int64_t hidden_size_v;
int64_t head_size;
int64_t head_size_v;
qkv_fomat_t qkv_fomat;
};

struct parse_multi_head_attention : op_parser<parse_multi_head_attention>
{

std::vector<op_desc> operators() const { return {{"MultiHeadAttention"}}; }

void unpack_qkv(const onnx_parser::node_info& info,
instruction_ref& query,
instruction_ref& key,
instruction_ref& value) const
{
// (batch_size, q_sequence_length, num_heads, 3, head_size) ->
// (3, batch_size, q_sequence_length, num_heads, head_size)
auto qkv_packed =
info.add_instruction(make_op("transpose", {{"permutation", {3, 0, 1, 2, 4}}}), query);
query = info.add_instruction(
make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), qkv_packed);
query = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), query);
key = info.add_instruction(
make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), qkv_packed);
key = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), key);
value = info.add_instruction(
make_op("slice", {{"axes", {0}}, {"starts", {2}}, {"ends", {3}}}), qkv_packed);
value = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), value);
}

void unpack_kv(const onnx_parser::node_info& info,
instruction_ref& key,
instruction_ref& value) const
{
// (batch_size, kv_sequence_length, num_heads, 2, head_size) ->
// (2, batch_size, kv_sequence_length, num_heads, head_size)
auto kv_packed =
info.add_instruction(make_op("transpose", {{"permutation", {3, 0, 1, 2, 4}}}), key);
key = info.add_instruction(
make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), kv_packed);
key = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), key);
value = info.add_instruction(
make_op("slice", {{"axes", {0}}, {"starts", {1}}, {"ends", {2}}}), kv_packed);
value = info.add_instruction(make_op("squeeze", {{"axes", {0}}}), value);
}

void check_inputs(const std::vector<instruction_ref>& args,
const int64_t num_heads,
multi_head_attention_parameters& params) const
{
if(args.empty() or args.size() > 3)
MIGRAPHX_THROW("MultiHeadAttention: Wrong number of inputs. Only 'query', 'key' and "
"'value' inputs are supported.");

auto query_dim = args[0]->get_shape().ndim();
auto query_lens = args[0]->get_shape().lens();

params.batch_size = query_lens[0];
params.q_sequence_length = query_lens[1];

if(query_dim != 3 and query_dim != 5)
MIGRAPHX_THROW("MultiHeadAttention: Input 'query' rank needs to be 3 or 5, current: " +
std::to_string(query_dim));

if(query_dim == 5)
{
if(query_lens[2] != num_heads or query_lens[3] != 3)
MIGRAPHX_THROW("MultiHeadAttention: Input 'query' shape needs to be (batch_size, "
"q_sequence_length, num_heads, 3, head_size) for packed input.");

params.kv_sequence_length = query_lens[1];
params.head_size = query_lens[4];
params.head_size_v = query_lens[4];
params.hidden_size = num_heads * query_lens[4];
params.hidden_size_v = num_heads * query_lens[4];
params.qkv_fomat = qkv_fomat_t::qkv_packed;
}
else // query_dim == 3
{
if(args.size() < 2)
MIGRAPHX_THROW("MultiHeadAttention: Wrong number of inputs, 'key' is missing.");

params.hidden_size = query_lens[2];
params.head_size = query_lens[2] / num_heads;

auto key_dim = args[1]->get_shape().ndim();
auto key_lens = args[1]->get_shape().lens();

if(key_dim < 3 or key_dim > 5)
MIGRAPHX_THROW(
"MultiHeadAttention: Input 'key' rank needs to be 3, 4 or 5, current: " +
std::to_string(key_dim));

if(key_dim == 5)
{
if(key_lens[0] != params.batch_size or key_lens[2] != num_heads or
key_lens[3] != 2 or key_lens[4] != params.head_size)
MIGRAPHX_THROW("MultiHeadAttention: Input 'key' shape needs to be (batch_size, "
"kv_sequence_length, num_heads, 2, head_size)");

params.kv_sequence_length = key_lens[1];
params.hidden_size_v = params.hidden_size;
params.head_size_v = key_lens[4];
params.qkv_fomat = qkv_fomat_t::kv_packed;
}
else
{
if(args.size() < 3)
MIGRAPHX_THROW(
"MultiHeadAttention: Wrong number of inputs, 'value' is missing.");

auto value_dim = args[2]->get_shape().ndim();
auto value_lens = args[2]->get_shape().lens();

if(key_dim != value_dim)
MIGRAPHX_THROW(
"MultiHeadAttention: Input 'key' and 'value' rank needs to be equal.");

if(key_dim == 3)
{
if(key_lens[0] != params.batch_size or key_lens[2] != params.hidden_size)
MIGRAPHX_THROW("MultiHeadAttention: Input 'key' shape needs to be "
"(batch_size, kv_sequence_length, hidden_size)");

if(value_lens[0] != params.batch_size or value_lens[1] != key_lens[1])
MIGRAPHX_THROW("MultiHeadAttention: Input 'value' shape needs to be "
"(batch_size, kv_sequence_length, hidden_size_v)");

params.kv_sequence_length = key_lens[1];
params.hidden_size_v = value_lens[2];
params.head_size_v = value_lens[2] / num_heads;
params.qkv_fomat = qkv_fomat_t::q_k_v;
}
else // key_dim == 4
{
if(key_lens[0] != params.batch_size or key_lens[1] != num_heads or
key_lens[3] != params.head_size)
MIGRAPHX_THROW("MultiHeadAttention: Input 'key' shape needs to be "
"(batch_size, num_heads, kv_sequence_length, head_size)");

if(value_lens[0] != params.batch_size or value_lens[1] != num_heads or
value_lens[2] != key_lens[2])
MIGRAPHX_THROW("MultiHeadAttention: Input 'value' shape needs to be "
"(batch_size, num_heads, kv_sequence_length, head_size_v)");

params.kv_sequence_length = key_lens[2];
params.hidden_size_v = value_lens[3] * num_heads;
params.head_size_v = value_lens[3];
params.qkv_fomat = qkv_fomat_t::q_k_v_cross;
}
}
}
}

instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
if(not contains(info.attributes, "num_heads"))
MIGRAPHX_THROW("MultiHeadAttention: num_heads attribute is required");

int64_t num_heads = parser.parse_value(info.attributes.at("num_heads")).at<int>();

multi_head_attention_parameters params;
check_inputs(args, num_heads, params);

auto query = args[0];
instruction_ref key;
instruction_ref value;

if(params.qkv_fomat == qkv_fomat_t::qkv_packed)
{
// Packed QKV: (batch_size, q_sequence_length, num_heads, 3, head_size)
unpack_qkv(info, query, key, value);
}
else
{
// Query: (batch_size, q_sequence_length, hidden_size)
std::vector<int64_t> q_dims{
params.batch_size, params.q_sequence_length, num_heads, params.head_size};
query = info.add_instruction(make_op("reshape", {{"dims", q_dims}}), query);

key = args[1];

if(params.qkv_fomat == qkv_fomat_t::kv_packed)
{
// Packed KV: (batch_size, kv_sequence_length, num_heads, 2, head_size)
unpack_kv(info, key, value);
}
else
{
value = args[2];
if(params.qkv_fomat == qkv_fomat_t::q_k_v)
{
// Key: (batch_size, kv_sequence_length, hidden_size)
// Value: (batch_size, kv_sequence_length, hidden_size_v)
std::vector<int64_t> k_dims{
params.batch_size, params.kv_sequence_length, num_heads, params.head_size};
std::vector<int64_t> v_dims{params.batch_size,
params.kv_sequence_length,
num_heads,
params.head_size_v};
key = info.add_instruction(make_op("reshape", {{"dims", k_dims}}), key);
value = info.add_instruction(make_op("reshape", {{"dims", v_dims}}), value);
}
}
}

// Target shape: (batch_size, num_heads, sequence_length, head_size)
std::vector<int64_t> perm{0, 2, 1, 3};
query = info.add_instruction(make_op("transpose", {{"permutation", perm}}), query);
if(params.qkv_fomat != qkv_fomat_t::q_k_v_cross)
{
key = info.add_instruction(make_op("transpose", {{"permutation", perm}}), key);
value = info.add_instruction(make_op("transpose", {{"permutation", perm}}), value);
}

float scale = 1 / std::sqrt(params.head_size);
if(contains(info.attributes, "scale"))
scale = parser.parse_value(info.attributes.at("scale")).at<float>();

auto scale_literal = info.add_literal(
migraphx::literal{migraphx::shape{query->get_shape().type()}, {scale}});

auto key_transposed =
info.add_instruction(make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), key);

auto result = info.add_instruction(make_op("dot"), query, key_transposed);
result = info.add_common_op("mul", result, scale_literal);
result = info.add_instruction(make_op("softmax", {{"axis", -1}}), result);
result = info.add_instruction(make_op("dot"), result, value);
result = info.add_instruction(make_op("transpose", {{"permutation", perm}}), result);
result = info.add_instruction(
make_op(
"reshape",
{{"dims", {params.batch_size, params.q_sequence_length, params.hidden_size_v}}}),
result);

return result;
}
};

} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
Loading
Loading