Retrieval Augmented Generation import torch import torch.nn as nn
class RAGNeuron(nn.Module): def init(self, input_size, hidden_size, output_size): super(RAGNeuron, self).init() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, output_size) self.retrieval_module = RetrievalModule() self.activation = nn.ReLU()
def forward(self, x):
# Retrieve relevant information from an external knowledge base
retrieved_information = self.retrieval_module(x)
# Combine the retrieved information with the input features
combined_input = torch.cat((x, retrieved_information), dim=1)
# Pass the combined input through the neural network layers
x = self.fc1(combined_input)
x = self.activation(x)
x = self.fc2(x)
return x
combined_input = torch.cat((x, retrieved_information), dim=1)
x = self.fc1(combined_input) x = self.activation(x)
y = 1 / torch.sqrt(x)
x = self.fc2(y) return x