Skip to content

[Kalman] Fix minor issues in two Kalman Lectures #32

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lectures/kalman.md
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ from scipy.linalg import eigvals

对于任意区域 $E$,积分 $\int_E p(x)dx$ 给出了我们认为导弹在该区域内的概率。

密度 $p$ 被称为随机变量 $x$ 的*先验*。
密度 $p$ 被称为随机变量 $x$ 的*先验分布*。

为了使我们的例子便于处理,我们假设我们的先验分布是高斯分布。

Expand Down
12 changes: 6 additions & 6 deletions lectures/kalman_2.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,9 +88,9 @@ def cjk(text):
:label: worker_model

\begin{aligned}
h_{t+1} &= \alpha h_t + \beta u_t + c w_{t+1}, \quad c_{t+1} \sim {\mathcal N}(0,1) \\
h_{t+1} &= \alpha h_t + \beta u_t + c w_{t+1}, \quad w_{t+1} \sim {N}(0,1) \\
u_{t+1} & = u_t \\
y_t & = g h_t + v_t , \quad v_t \sim {\mathcal N} (0, R)
y_t & = g h_t + v_t , \quad v_t \sim {N} (0, R)
\end{aligned}
```

Expand All @@ -99,8 +99,8 @@ y_t & = g h_t + v_t , \quad v_t \sim {\mathcal N} (0, R)
* $h_t$ 是时间 $t$ 时的人力资本对数
* $u_t$ 是时间 $t$ 时劳动者投入人力资本积累的努力程度的对数
* $y_t$ 是时间 $t$ 时劳动者产出的对数
* $h_0 \sim {\mathcal N}(\hat h_0, \sigma_{h,0})$
* $u_0 \sim {\mathcal N}(\hat u_0, \sigma_{u,0})$
* $h_0 \sim {N}(\hat h_0, \sigma_{h,0})$
* $u_0 \sim {N}(\hat u_0, \sigma_{u,0})$

模型的参数包括 $\alpha, \beta, c, R, g, \hat h_0, \hat u_0, \sigma_h, \sigma_u$。

Expand All @@ -110,7 +110,7 @@ y_t & = g h_t + v_t , \quad v_t \sim {\mathcal N} (0, R)

在时间 $0$ 开始时,公司既无法观察到劳动者的初始人力资本 $h_0$,也无法观察到其固有的永久努力水平 $u_0$。

公司认为特定劳动者的 $u_0$ 服从高斯概率分布,因此由 $u_0 \sim {\mathcal N}(\hat u_0, \sigma_{u,0})$ 描述。
公司认为特定劳动者的 $u_0$ 服从高斯概率分布,因此由 $u_0 \sim {N}(\hat u_0, \sigma_{u,0})$ 描述。

劳动者"类型"中的 $h_t$ 部分随时间变化,但努力程度部分 $u_t = u_0$ 保持不变。

Expand Down Expand Up @@ -156,7 +156,7 @@ y_t & = \begin{bmatrix} g & 0 \end{bmatrix} \begin{bmatrix} h_{t} \cr u_{t} \end
\begin{aligned}
x_{t+1} & = A x_t + C w_{t+1} \cr
y_t & = G x_t + v_t \cr
x_0 & \sim {\mathcal N}(\hat x_0, \Sigma_0)
x_0 & \sim {N}(\hat x_0, \Sigma_0)
\end{aligned}
```

Expand Down
Loading