-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
642 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
# ----------------------------------------------------------------------------- | ||
# From Numpy to Python | ||
# Copyright (2017) Nicolas P. Rougier - BSD license | ||
# More information at https://github.com/rougier/numpy-book | ||
# ----------------------------------------------------------------------------- | ||
import math | ||
import numpy as np | ||
import time | ||
|
||
# need to import before torch | ||
from matplotlib import colors | ||
import matplotlib.pyplot as plt | ||
|
||
import torch | ||
torch.set_default_device("cpu") | ||
|
||
|
||
# ### Original NumPy version. ### | ||
|
||
def mandelbrot(xmin, xmax, ymin, ymax, xn, yn, maxiter, horizon=2.0): | ||
# Adapted from https://www.ibm.com/developerworks/community/blogs/jfp/... | ||
# .../entry/How_To_Compute_Mandelbrodt_Set_Quickly?lang=en | ||
X = np.linspace(xmin, xmax, xn, dtype=np.float32) | ||
Y = np.linspace(ymin, ymax, yn, dtype=np.float32) | ||
C = X + Y[:,None]*1j | ||
N = np.zeros(C.shape, dtype=int) | ||
Z = np.zeros(C.shape, np.complex64) | ||
for n in range(maxiter): | ||
I = np.less(abs(Z), horizon) | ||
N[I] = n | ||
Z[I] = Z[I]**2 + C[I] | ||
N[N == maxiter-1] = 0 | ||
return Z, N | ||
|
||
|
||
|
||
# ### Compiled analog. ### | ||
|
||
# For torch.Dynamo, need to work around | ||
# 1. Complex numbers: add a trailing length-2 dimension for Re and Im parts. | ||
# 2. Avoid fancy indexing: use with np.where instead to avoid data dependency | ||
# | ||
# Also: | ||
# 1. Only compile the inner loop, to keep compile time and memory consumption | ||
# under control (otherwise, can run into OOM while compiling) | ||
|
||
def abs2(a): | ||
r"""abs(a) replacement.""" | ||
return a[..., 0]**2 + a[..., 1]**2 | ||
|
||
|
||
def sq2(a): | ||
"""a**2 replacement.""" | ||
z = np.empty_like(a) | ||
z[..., 0] = a[..., 0]**2 - a[..., 1]**2 | ||
z[..., 1] = 2 * a[..., 0] * a[..., 1] | ||
return z | ||
|
||
|
||
@torch.compile | ||
def step(n0, c, Z, N, horizon, chunksize): | ||
for j in range(chunksize): | ||
n = n0 + j | ||
I = abs2(Z) < horizon**2 | ||
N = np.where(I, n, N) # N[I] = n | ||
Z = np.where(I[..., None], sq2(Z) + c, Z) # Z[I] = Z[I]**2 + C[I] | ||
return Z, N | ||
|
||
|
||
def mandelbrot_c(xmin, xmax, ymin, ymax, xn, yn, horizon=2**10, maxiter=5): | ||
x = np.linspace(xmin, xmax, xn, dtype='float32') | ||
y = np.linspace(ymin, ymax, yn, dtype='float32') | ||
c = np.stack(np.broadcast_arrays(x[None, :], y[:, None]), axis=-1) | ||
|
||
N = np.zeros(c.shape[:-1], dtype='int') | ||
Z = np.zeros_like(c, dtype='float32') | ||
|
||
chunksize=50 | ||
n_chunks = maxiter // chunksize | ||
|
||
for i_chunk in range(n_chunks): | ||
n0 = i_chunk*chunksize | ||
Z, N = step(n0, c, Z, N, horizon, chunksize) | ||
|
||
N = np.where(N == maxiter-1, 0, N) # N[N == maxiter-1] = 0 | ||
return Z, N | ||
|
||
|
||
|
||
# plot a nice figure | ||
def visualize(Z, N, horizon, xn, yn): | ||
log_horizon = math.log(horizon, 2) | ||
M = np.nan_to_num(N + 1 - np.log(np.log(abs(Z)))/np.log(2) + log_horizon) | ||
|
||
dpi = 72 | ||
width = 10 | ||
height = 10*yn/xn | ||
|
||
fig = plt.figure(figsize=(width, height), dpi=dpi) | ||
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0], frameon=False, aspect=1) | ||
|
||
light = colors.LightSource(azdeg=315, altdeg=10) | ||
|
||
plt.imshow(light.shade(M, cmap=plt.cm.hot, vert_exag=1.5, | ||
norm = colors.PowerNorm(0.3), blend_mode='hsv'), | ||
extent=[xmin, xmax, ymin, ymax], interpolation="bicubic") | ||
ax.set_xticks([]) | ||
ax.set_yticks([]) | ||
plt.savefig("mandelbrot.png") | ||
# plt.show() | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
# start up | ||
xmax, xmin, xn = -2.25, 0.75, 3000 // 2 | ||
ymax, ymin, yn = -1.25, 1.25, 2500 // 2 | ||
|
||
maxiter = 200 | ||
horizon = 2**10 | ||
|
||
# time numpy | ||
start_time = time.time() | ||
Z, N = mandelbrot(xmin, xmax, ymin, ymax, xn, yn, horizon=horizon, maxiter=maxiter) | ||
end_time = time.time() | ||
numpy_time = end_time - start_time | ||
print("\n\nnumpy: elapsed=", numpy_time) | ||
|
||
|
||
start_time = time.time() | ||
step = torch.compile(step) | ||
end_time = time.time() | ||
print("compile: ", end_time - start_time) | ||
|
||
# compile, warm up, time | ||
for _ in range(3): | ||
mandelbrot_c(xmin, xmax, ymin, ymax, xn, yn, horizon=horizon, maxiter=maxiter) | ||
|
||
# measure | ||
start_time = time.time() | ||
nreps = 100 | ||
for _ in range(nreps): | ||
Z, N = mandelbrot_c(xmin, xmax, ymin, ymax, xn, yn, horizon=horizon, maxiter=maxiter) | ||
end_time = time.time() | ||
compiled_time = (end_time - start_time) / nreps | ||
print("compiled: elapsed=", compiled_time, ' speedup = ', numpy_time / compiled_time) | ||
|
||
# Visualization | ||
Z = Z[..., 0] + 1j*Z[..., 1] | ||
visualize(Z, N, horizon, xn, yn) | ||
|
Oops, something went wrong.