Skip to content

[GPT beats diffusionšŸ”„] [scaling laws in visual generationšŸ“ˆ] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction". An *ultra-simple, user-friendly yet state-of-the-art* codebase for autoregressive image generation!

License

Notifications You must be signed in to change notification settings

Pulyong/VAR-Analysis

Ā 
Ā 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Ā 

History

44 Commits
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 
Ā 

Repository files navigation

This Repository for analysis VAR(Visual Autoregressive Modeling)

demo platformĀ  arXivĀ  huggingface weightsĀ  SOTA

Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction


Analysis

How Model Generate Image?

Generate Image with depth 30 model

  • Model Generate Image Coarse-to-Fine
  • low resolution token determines the overall color
  • high resolution token gradually adds detailed information in a residual manner

Failure Image

  • Model can't generate person (I think this is becuase there is no prior on people)
  • Model can't generate when there are multiple objects (I guess...)

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citation

If our work assists your research, feel free to give us a star ā­ or cite us using:

@Article{VAR,
      title={Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction}, 
      author={Keyu Tian and Yi Jiang and Zehuan Yuan and Bingyue Peng and Liwei Wang},
      year={2024},
      eprint={2404.02905},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

[GPT beats diffusionšŸ”„] [scaling laws in visual generationšŸ“ˆ] Official impl. of "Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction". An *ultra-simple, user-friendly yet state-of-the-art* codebase for autoregressive image generation!

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 92.7%
  • Jupyter Notebook 7.3%