Skip to content
/ pffft Public
forked from marton78/pffft

A GitHub mirror of Julien Pommier's PFFFT: a pretty fast FFT.

Notifications You must be signed in to change notification settings

ProjRoca/pffft

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PFFFT: a pretty fast FFT.

TL;DR

PFFFT does 1D Fast Fourier Transforms, of single precision real and complex vectors. It tries do it fast, it tries to be correct, and it tries to be small. Computations do take advantage of SSE1 instructions on x86 cpus, Altivec on powerpc cpus, and NEON on ARM cpus. The license is BSD-like.

Why does it exist:

I was in search of a good performing FFT library , preferably very small and with a very liberal license.

When one says "fft library", FFTW ("Fastest Fourier Transform in the West") is probably the first name that comes to mind -- I guess that 99% of open-source projects that need a FFT do use FFTW, and are happy with it. However, it is quite a large library , which does everything fft related (2d transforms, 3d transforms, other transformations such as discrete cosine , or fast hartley). And it is licensed under the GNU GPL , which means that it cannot be used in non open-source products.

An alternative to FFTW that is really small, is the venerable FFTPACK v4, which is available on NETLIB. A more recent version (v5) exists, but it is larger as it deals with multi-dimensional transforms. This is a library that is written in FORTRAN 77, a language that is now considered as a bit antiquated by many. FFTPACKv4 was written in 1985, by Dr Paul Swarztrauber of NCAR, more than 25 years ago ! And despite its age, benchmarks show it that it still a very good performing FFT library, see for example the 1d single precision benchmarks here. It is however not competitive with the fastest ones, such as FFTW, Intel MKL, AMD ACML, Apple vDSP. The reason for that is that those libraries do take advantage of the SSE SIMD instructions available on Intel CPUs, available since the days of the Pentium III. These instructions deal with small vectors of 4 floats at a time, instead of a single float for a traditionnal FPU, so when using these instructions one may expect a 4-fold performance improvement.

The idea was to take this fortran fftpack v4 code, translate to C, modify it to deal with those SSE instructions, and check that the final performance is not completely ridiculous when compared to other SIMD FFT libraries. Translation to C was performed with f2c. The resulting file was a bit edited in order to remove the thousands of gotos that were introduced by f2c. You will find the fftpack.h and fftpack.c sources in the repository, this a complete translation of fftpack, with the discrete cosine transform and the test program. There is no license information in the netlib repository, but it was confirmed to me by the fftpack v5 curators that the [same terms do apply to fftpack v4] (http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html). This is a "BSD-like" license, it is compatible with proprietary projects.

Adapting fftpack to deal with the SIMD 4-element vectors instead of scalar single precision numbers was more complex than I originally thought, especially with the real transforms, and I ended up writing more code than I planned..

The code:

Only two files, in good old C, pffft.c and pffft.h. The API is very very simple, just make sure that you read the comments in pffft.h.

Comparison with other FFTs:

The idea was not to break speed records, but to get a decently fast fft that is at least 50% as fast as the fastest FFT -- especially on slowest computers . I'm more focused on getting the best performance on slow cpus (Atom, Intel Core 1, old Athlons, ARM Cortex-A9...), than on getting top performance on today fastest cpus.

It can be used in a real-time context as the fft functions do not perform any memory allocation -- that is why they accept a 'work' array in their arguments.

It is also a bit focused on performing 1D convolutions, that is why it provides "unordered" FFTs , and a fourier domain convolution operation.

Benchmark results (cpu tested: core i7 2600, core 2 quad, core 1 duo, atom N270, cortex-A9)

The benchmark shows the performance of various fft implementations measured in MFlops, with the number of floating point operations being defined as 5Nlog2(N) for a length N complex fft, and 2.5*Nlog2(N) for a real fft. See here for an explanation of these formulas.

MacOS Lion, gcc 4.2, 64-bit, fftw 3.3 on a 3.4 GHz core i7 2600

Built with:

gcc-4.2 -o test_pffft -arch x86_64 -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -DHAVE_VECLIB -framework veclib -DHAVE_FFTW -lfftw3f
input len real FFTPack real vDSP real FFTW real PFFFT cplx FFTPack cplx vDSP cplx FFTW cplx PFFFT
64 2816 8596 7329 8187 2887 14898 14668 11108
96 3298 n/a 8378 7727 3953 n/a 15680 10878
128 3507 11575 9266 10108 4233 17598 16427 12000
160 3391 n/a 9838 10711 4220 n/a 16653 11187
192 3919 n/a 9868 10956 4297 n/a 15770 12540
256 4283 13179 10694 13128 4545 19550 16350 13822
384 3136 n/a 10810 12061 3600 n/a 16103 13240
480 3477 n/a 10632 12074 3536 n/a 11630 12522
512 3783 15141 11267 13838 3649 20002 16560 13580
640 3639 n/a 11164 13946 3695 n/a 15416 13890
768 3800 n/a 11245 13495 3590 n/a 15802 14552
800 3440 n/a 10499 13301 3659 n/a 12056 13268
1024 3924 15605 11450 15339 3769 20963 13941 15467
2048 4518 16195 11551 15532 4258 20413 13723 15042
2400 4294 n/a 10685 13078 4093 n/a 12777 13119
4096 4750 16596 11672 15817 4157 19662 14316 14336
8192 3820 16227 11084 12555 3691 18132 12102 13813
9216 3864 n/a 10254 12870 3586 n/a 12119 13994
16384 3822 15123 10454 12822 3613 16874 12370 13881
32768 4175 14512 10662 11095 3881 14702 11619 11524
262144 3317 11429 6269 9517 2810 11729 7757 10179
1048576 2913 10551 4730 5867 2661 7881 3520 5350

Debian 6, gcc 4.4.5, 64-bit, fftw 3.3.1 on a 3.4 GHz core i7 2600

Built with:

gcc -o test_pffft -DHAVE_FFTW -msse2 -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L$HOME/local/lib -I$HOME/local/include/ -lfftw3f -lm
N (input length) real FFTPack real FFTW real PFFFT cplx FFTPack cplx FFTW cplx PFFFT
64 3840 7680 8777 4389 20480 11171
96 4214 9633 8429 4816 22477 11238
128 3584 10240 10240 5120 23893 11947
192 4854 11095 12945 4854 22191 14121
256 4096 11703 16384 5120 23406 13653
384 4395 14651 12558 4884 19535 14651
512 5760 13166 15360 4608 23040 15360
768 4907 14020 16357 4461 19628 14020
1024 5120 14629 14629 5120 20480 15754
2048 5632 14080 18773 4693 12516 16091
4096 5120 13653 17554 4726 7680 14456
8192 4160 7396 13312 4437 14791 13312
9216 4210 6124 13473 4491 7282 14970
16384 3976 11010 14313 4210 11450 13631
32768 4260 10224 10954 4260 6816 11797
262144 3736 6896 9961 2359 8965 9437
1048576 2796 4534 6453 1864 3078 5592

MacOS Snow Leopard, gcc 4.0, 32-bit, fftw 3.3 on a 1.83 GHz core 1 duo

Built with:

gcc -o test_pffft -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework veclib
input len real FFTPack real vDSP real FFTW real PFFFT cplx FFTPack cplx vDSP cplx FFTW cplx PFFFT
64 745 2145 1706 2028 961 3356 3313 2300
96 877 n/a 1976 1978 1059 n/a 3333 2233
128 951 2808 2213 2279 1202 3803 3739 2494
192 1002 n/a 2456 2429 1186 n/a 3701 2508
256 1065 3205 2641 2793 1302 4013 3912 2663
384 845 n/a 2759 2499 948 n/a 3729 2504
512 900 3476 2956 2759 974 4057 3954 2645
768 910 n/a 2912 2737 975 n/a 3837 2614
1024 936 3583 3107 3009 1006 4124 3821 2697
2048 1057 3585 3091 2837 1089 3889 3701 2513
4096 1083 3524 3092 2733 1039 3617 3462 2364
8192 874 3252 2967 2363 911 3106 2789 2302
9216 898 n/a 2420 2290 865 n/a 2676 2204
16384 903 2892 2506 2421 899 3026 2797 2289
32768 965 2837 2550 2358 920 2922 2763 2240
262144 738 2422 1589 1708 610 2038 1436 1091
1048576 528 1207 845 880 606 1020 669 1036

Ubuntu 11.04, gcc 4.5, 32-bit, fftw 3.2 on a 2.66 core 2 quad

Built with:

gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
input len real FFTPack real FFTW real PFFFT cplx FFTPack cplx FFTW cplx PFFFT
64 1920 3614 5120 2194 7680 6467
96 1873 3549 5187 2107 8429 5863
128 2240 3773 5514 2560 7964 6827
192 1765 4569 7767 2284 9137 7061
256 2048 5461 7447 2731 9638 7802
384 1998 5861 6762 2313 9253 7644
512 2095 6144 7680 2194 10240 7089
768 2230 5773 7549 2045 10331 7010
1024 2133 6400 8533 2133 10779 7877
2048 2011 7040 8665 1942 10240 7768
4096 2194 6827 8777 1755 9452 6827
8192 1849 6656 6656 1752 7831 6827
9216 1871 5858 6416 1643 6909 6266
16384 1883 6223 6506 1664 7340 6982
32768 1826 6390 6667 1631 7481 6971
262144 1546 4075 5977 1299 3415 3551
1048576 1104 2071 1730 1104 1149 1834

Ubuntu 11.04, gcc 4.5, 32-bit, fftw 3.3 on a 1.6 GHz Atom N270

Built with:

gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
N (input length) real FFTPack real FFTW real PFFFT cplx FFTPack cplx FFTW cplx PFFFT
64 452 1041 1336 549 2318 1781
96 444 1297 1297 503 2408 1686
128 527 1525 1707 543 2655 1886
192 498 1653 1849 539 2678 1942
256 585 1862 2156 594 2777 2244
384 499 1870 1998 511 2586 1890
512 562 2095 2194 542 2973 2194
768 545 2045 2133 545 2365 2133
1024 595 2133 2438 569 2695 2179
2048 587 2125 2347 521 2230 1707
4096 495 1890 1834 492 1876 1672
8192 469 1548 1729 438 1740 1664
9216 468 1663 1663 446 1585 1531
16384 453 1608 1767 398 1476 1664
32768 456 1420 1503 387 1388 1345
262144 309 385 726 262 415 840
1048576 280 351 739 261 313 797

Windows 7, visual c++ 2010 on a 1.6 GHz Atom N270

Built with:

cl /Ox -D_USE_MATH_DEFINES /arch:SSE test_pffft.c pffft.c fftpack.c

(visual c++ is definitively not very good with SSE intrinsics...)

N (input length) real FFTPack real PFFFT cplx FFTPack cplx PFFFT
64 173 1009 174 1159
96 169 1029 188 1201
128 195 1242 191 1275
192 178 1312 184 1276
256 196 1591 186 1281
384 172 1409 181 1281
512 187 1640 181 1313
768 171 1614 176 1258
1024 186 1812 178 1223
2048 190 1707 186 1099
4096 182 1446 177 975
8192 175 1345 169 1034
9216 165 1271 168 1023
16384 166 1396 165 949
32768 172 1311 161 881
262144 136 632 134 629
1048576 134 698 127 623

Ubuntu 12.04, gcc-4.7.3, 32-bit, with fftw 3.3.3 (built with --enable-neon), on a 1.2GHz ARM Cortex A9 (Tegra 3)

Built with:

gcc-4.7 -O3 -DHAVE_FFTW -march=armv7-a -mtune=cortex-a9 -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm -I/usr/local/include/ -L/usr/local/lib/ -lfftw3f
input len real FFTPack real FFTW real PFFFT cplx FFTPack cplx FFTW cplx PFFFT
64 549 452 731 512 602 640
96 421 272 702 496 571 602
128 498 512 815 597 618 652
160 521 536 815 586 669 625
192 539 571 883 485 597 626
256 640 539 975 569 611 671
384 499 610 879 499 602 637
480 518 507 877 496 661 616
512 524 591 1002 549 678 668
640 542 612 955 568 663 645
768 557 613 981 491 663 598
800 514 353 882 514 360 574
1024 640 640 1067 492 683 602
2048 587 640 908 486 640 552
2400 479 368 777 422 376 518
4096 511 614 853 426 640 534
8192 415 584 708 386 622 516
9216 419 571 687 364 586 506
16384 426 577 716 398 606 530
32768 417 572 673 399 572 468
262144 219 380 293 255 431 343
1048576 202 274 237 265 282 355

Same platform as above, but this time pffft and fftpack are built with clang 3.2:

clang -O3 -DHAVE_FFTW -march=armv7-a -mtune=cortex-a9 -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm -I/usr/local/include/ -L/usr/local/lib/ -lfftw3f
input len real FFTPack real FFTW real PFFFT cplx FFTPack cplx FFTW cplx PFFFT
64 427 452 853 427 602 1024
96 351 276 843 337 571 963
128 373 512 996 390 618 1054
160 426 536 987 375 669 914
192 404 571 1079 388 588 1079
256 465 539 1205 445 602 1170
384 366 610 1099 343 594 1099
480 356 507 1140 335 651 931
512 411 591 1213 384 649 1124
640 398 612 1193 373 654 901
768 409 613 1227 383 663 1044
800 411 348 1073 353 358 809
1024 427 640 1280 413 692 1004
2048 414 626 1126 371 640 853
2400 399 373 898 319 368 653
4096 404 602 1059 357 633 778
8192 332 584 792 308 616 716
9216 322 561 783 299 586 687
16384 344 568 778 314 617 745
32768 342 564 737 314 552 629
262144 201 383 313 227 435 413
1048576 187 262 251 228 281 409

So it looks like, on ARM, gcc 4.7 is the best at scalar floating point (the fftpack performance numbers are better with gcc), while clang is the best with neon intrinsics (see how pffft perf has improved with clang 3.2).

NVIDIA Jetson TK1 board, gcc-4.8.2. The cpu is a 2.3GHz cortex A15 (Tegra K1).

Built with:

gcc -O3 -march=armv7-a -mtune=native -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm
input len real FFTPack real PFFFT cplx FFTPack cplx PFFFT
64 1735 3308 1994 3744
96 1596 3448 1987 3572
128 1807 4076 2255 3960
160 1769 4083 2071 3845
192 1990 4233 2017 3939
256 2191 4882 2254 4346
384 1878 4492 2073 4012
480 1748 4398 1923 3951
512 2030 5064 2267 4195
640 1918 4756 2094 4184
768 2099 4907 2048 4297
800 1822 4555 1880 4063
1024 2232 5355 2187 4420
2048 2176 4983 2027 3602
2400 1741 4256 1710 3344
4096 1816 3914 1851 3349
8192 1716 3481 1700 3255
9216 1735 3589 1653 3094
16384 1567 3483 1637 3244
32768 1624 3240 1655 3156
262144 1012 1898 983 1503
1048576 876 1154 868 1341

The performance on the tegra K1 is pretty impressive. I'm not including the FFTW numbers as they as slightly below the scalar fftpack numbers, so something must be wrong (however it seems to be correctly configured and is using neon simd instructions).

When using clang 3.4 the pffft version is even a bit faster, reaching 5.7 GFlops for real ffts of size 1024.

About

A GitHub mirror of Julien Pommier's PFFFT: a pretty fast FFT.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 100.0%