Skip to content

Radio emission–based dust mass estimation via 1D radiative transfer in planetesimal formation simulations. Supports polydisperse dust, scattering, and self-gravitating systems.

License

Notifications You must be signed in to change notification settings

Professor-G/protoRT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Documentation Status GPLv3 License DOI

protoRT

This is an open-source Python-based toolkit for 1D radiative transfer (with and without scattering) and mass analysis in numerical simulations of planetesimal formation. It computes the optical depth, outgoing intensity, and the mass excess due to optically thick regions in dust-rich environments. It supports mono and polydisperse models, with and without self-gravity. This code was used to research the mass budget problem in protoplanetary disks, see Godines et al. (2025).

Installation

The current stable version can be installed via pip:

    $ pip install protoRT

Documentation

For technical details and examples of how to implement this program for numerical simulation analysis, check out our Documentation.

Getting Started

The code provides three main functionalities: Protoplanetary disk modeling, dust opacity calculations using DSHARP opacities (supports mono and polydisperse models), and the main class RadiativeTransferCube which conducts the radiative transfer, computing the optical depth, intensities, and resulting mass excess when optically thin emission is assumed.

To get started, a test dataset from a single-species streaming instability simulation without self-gravity, from Yang & Johansen (2014), taken at orbit 100, is provided and automatically loaded if no data is input. This is a shearing box with a cubic domain, set up with a Stokes number of 0.3 and a pressure gradient parameter of $\Pi$=0.05. The data will be loaded alongside the corresponding 1D coordinate axis array, in units of gas scale height (H).

from protoRT import rtcube

cube = rtcube.RadiativeTransferCube()
module_import

By default the class is instantiated with a gas column density (column_density) of $\Sigma_g$=10 (g/cm²), a temperature of T=30 (K), a gas scale height of H=5 (au), and a stokes number of stoke=0.3. The radiative transfer is also conducted at the 1 mm wavelength. There are a variety of simulation and model parameters to consider when using your own data, although note that a lot of these arguments are only required if analyzing multi-species simulations, with some others that are only necessary if the simulation is self-gravitating. Review the API documention for parameter details.

The configure class method will convert the simulation into physical units (cgs) and run through all the relevant calculations in order to perform the radiation transfer at the specified wavelength and compute the mass excess. When no opacities are input (kappa and/or sigma), the code will use the DSHARP opacities included in the compute_opacities module. When using the DSHARP opacities, ensure that the internal dust density of the dust grains (grain_rho) is the default value of 1.675 (g/cm³) to be consistent with the DSHARP dust model.

cube.configure()

Executing this method will automatically assign all of the relevant attributes including the optical depth at the output plane (tau), the corresponding intensity map (intensity), as well as the filling_factor, mass_excess, and the mass of each planetesimal in the simulation (proto_mass), if applicable. If analyzing multi-species models, a per-species density field will also be saved in the density_per_species class attribute; this is used to calculate particle-weighted opacities at each grid cell.

import numpy as np
import pylab as plt

fig, axes = plt.subplots(1, 2, figsize=(12, 5))
extent = [cube.axis[0], cube.axis[-1], cube.axis[0], cube.axis[-1]]

# Plot optical depth with robust scaling
med_tau = np.median(cube.tau)
std_tau = np.median(np.abs(cube.tau - med_tau))
vmin_tau, vmax_tau = med_tau - 3 * std_tau, med_tau + 10 * std_tau
im0 = axes[0].imshow(cube.tau, vmin=vmin_tau, vmax=vmax_tau, cmap='viridis', extent=extent, origin='lower', aspect='equal')
axes[0].set_title('Optical Depth', fontsize=18)
axes[0].set_xlabel(r'$x/H$', fontsize=16)
axes[0].set_ylabel(r'$y/H$', fontsize=16)
cbar0 = plt.colorbar(im0, ax=axes[0], fraction=0.046, pad=0.04)
cbar0.set_label(r'$\tau_{1.0\,\mathrm{mm}}^{\mathrm{eff}}$', fontsize=14)

# Plot intensity with robust scaling
med_int = np.median(cube.intensity)
std_int = np.median(np.abs(cube.intensity - med_int))
vmin_int, vmax_int = med_int - 3 * std_int, med_int + 10 * std_int
im1 = axes[1].imshow(cube.intensity, vmin=vmin_int, vmax=vmax_int, cmap='inferno', extent=extent, origin='lower', aspect='equal')
axes[1].set_title('Outgoing Intensity', fontsize=18)
axes[1].set_xlabel(r'$x/H$', fontsize=16)
axes[1].set_ylabel(r'$y/H$', fontsize=16)
cbar1 = plt.colorbar(im1, ax=axes[1], fraction=0.046, pad=0.04)
cbar1.set_label(r'$I_{1.0\,\mathrm{mm}} \, (\mathrm{erg}~\mathrm{s}^{-1}~\mathrm{cm}^{-2}~\mathrm{Hz}^{-1}~\mathrm{sr}^{-1})$', fontsize=14)

fig.suptitle(f'RT Results (Absorption Only): Mass Excess = {float(cube.mass_excess):.3f}, Filling Factor = {float(cube.filling_factor):.3f}', fontsize=18)
plt.tight_layout()
plt.show()

tau_intensity_abs_only

By default the scattering opacities are not considered in the radiative transfer, this is controlled via the include_scattering argument. The following shows the same analysis but with scattering.

IMPORTANT: The data cube is converted from code to physical units during the configuration, and is overwritten. As such, do not re-configure multiple times, instead re-instantiate the class object.

cube = rtcube.RadiativeTransferCube(include_scattering=True)
cube.configure() 

# Plot
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
extent = [cube.axis[0], cube.axis[-1], cube.axis[0], cube.axis[-1]]

# Plot optical depth with robust scaling
med_tau = np.median(cube.tau)
std_tau = np.median(np.abs(cube.tau - med_tau))
vmin_tau, vmax_tau = med_tau - 3 * std_tau, med_tau + 10 * std_tau
im0 = axes[0].imshow(cube.tau, vmin=vmin_tau, vmax=vmax_tau, cmap='viridis', extent=extent, origin='lower', aspect='equal')
axes[0].set_title('Optical Depth', fontsize=18)
axes[0].set_xlabel(r'$x/H$', fontsize=16)
axes[0].set_ylabel(r'$y/H$', fontsize=16)
cbar0 = plt.colorbar(im0, ax=axes[0], fraction=0.046, pad=0.04)
cbar0.set_label(r'$\tau_{1.0\,\mathrm{mm}}^{\mathrm{eff}}$', fontsize=14)

# Plot intensity with robust scaling
med_int = np.median(cube.intensity)
std_int = np.median(np.abs(cube.intensity - med_int))
vmin_int, vmax_int = med_int - 3 * std_int, med_int + 10 * std_int
im1 = axes[1].imshow(cube.intensity, vmin=vmin_int, vmax=vmax_int, cmap='inferno', extent=extent, origin='lower', aspect='equal')
axes[1].set_title('Outgoing Intensity', fontsize=18)
axes[1].set_xlabel(r'$x/H$', fontsize=16)
axes[1].set_ylabel(r'$y/H$', fontsize=16)
cbar1 = plt.colorbar(im1, ax=axes[1], fraction=0.046, pad=0.04)
cbar1.set_label(r'$I_{1.0\,\mathrm{mm}} \, (\mathrm{erg}~\mathrm{s}^{-1}~\mathrm{cm}^{-2}~\mathrm{Hz}^{-1}~\mathrm{sr}^{-1})$', fontsize=14)

fig.suptitle(f'RT Results (Absorption + Scattering): Mass Excess = {float(cube.mass_excess):.3f}, Filling Factor = {float(cube.filling_factor):.3f}', fontsize=18)
plt.tight_layout()
plt.show()

tau_intensity_abs_and_sca

In this example we can see that scattering effects further suppress the emergent intensity and increase the mass excess and filling factor by approximately 16% and 13%, respectively.

To learn how to use the code, please review the following page which details how the program was used in Godines et al. 2025, which employed multi-species simulations with self-gravity, at three locations in the disk.

Citation

If you use this program in publication, we would appreciate citations to the paper, Godines et al. 2025.

How to Contribute?

Want to contribute? Bug detections? Comments? Suggestions? Please email us : [email protected], [email protected]

About

Radio emission–based dust mass estimation via 1D radiative transfer in planetesimal formation simulations. Supports polydisperse dust, scattering, and self-gravitating systems.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages